Outer measure: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
 
: '''Definition.''' Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
* <math> \mu^* ( \emptyset) = 0 </math>,
* <math> \mu^* ( \emptyset) = 0 </math>,
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>,
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>,
Line 5: Line 6:




: '''Definition.'''
: '''Definition.''' A set <math> A \subset X </math> is  <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all  <math> E \subset X </math>.
A set <math> A \subset X </math> is  <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all  <math> E \subset X </math>.


==References==
==References==

Revision as of 17:54, 20 October 2020

Definition. Let be a nonempty set. An outer measure [1] on the set is a function such that
  • ,
  • if ,


Definition. A set is -measurable if for all .

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, Section 1.4