Outer measure: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that | |||
: '''Definition.''' Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that | |||
* <math> \mu^* ( \emptyset) = 0 </math>, | * <math> \mu^* ( \emptyset) = 0 </math>, | ||
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>, | * <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>, | ||
Line 5: | Line 6: | ||
: '''Definition.''' | : '''Definition.''' A set <math> A \subset X </math> is <math> \mu^* </math>-measurable if <math> \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all <math> E \subset X </math>. | ||
A set <math> A \subset X </math> is <math> \mu^* </math>-measurable if <math> \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all <math> E \subset X </math>. | |||
==References== | ==References== |