Outer measure: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
* <math> \mu^* ( \emptyset) = 0 </math> | * <math> \mu^* ( \emptyset) = 0 </math> | ||
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math> | * <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math> | ||
* <math> \mu* | * <math> \mu* (\cup_{j=1}^\infty A_j) \leq \sum_{j=1}^\infty \mu^*(A_j).</math> |
Revision as of 14:21, 20 October 2020
Let be a nonempty set. An outer measure on the set is a function such that
- if