Geodesics and generalized geodesics: Difference between revisions
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
== Geodesics in general metric spaces == | == Geodesics in general metric spaces == | ||
First, we will introduce definition of the geodesic in general metric space <math> X </math>. | |||
: '''Definition.''' A curve <math> c:[0,1] \rightarrow X</math> is said to be geodesic in <math> X </math> if it minimizes the length <math> L(\omega)</math> of all the curves <math> \omega:[0,1] \rightarrow X</math> <br> such that <math> c(0)=\omega(0)</math> and <math> c(1)=\omega(1)</math>. | : '''Definition.''' A curve <math> c:[0,1] \rightarrow X</math> is said to be geodesic in <math> X </math> if it minimizes the length <math> L(\omega)</math> of all the curves <math> \omega:[0,1] \rightarrow X</math> <br> such that <math> c(0)=\omega(0)</math> and <math> c(1)=\omega(1)</math>. |
Revision as of 12:51, 11 June 2020
Introduction
There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC)(p.188[1]) and provide a dynamic formulation of the special case Namely, it is possible to see as an infimum of the lengts of curves that satisfy Continuity equation
().
Geodesics in general metric spaces
First, we will introduce definition of the geodesic in general metric space .
- Definition. A curve is said to be geodesic in if it minimizes the length of all the curves
such that and .
- Definition. A metric space is called a length space if it holds
- Definition. In a length space, a curve is said to be constant speed geodesic between and in if it satisfies
for all
Statement of Theorem
Now, we can rephrase Wasserstein metrics in dynamic language. In special case:
- Theorem.(Benamou-Brenier)[1] Let . Then we have
Generalization
It is possible to generalize the previous theorem and theory to metrics. More about that could be seen in the book [2].
However, it is possible to generalize theorem for a different kind of geodesics [3].
References
- ↑ 1.0 1.1 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 202-207
- ↑ [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Chapter 7.2., pages 158-160]
- ↑ F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 275-276