Formal Riemannian Structure of the Wasserstein metric: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:


==Tangent Space Induced by the Wasserstein Metric==
==Tangent Space Induced by the Wasserstein Metric==
A convenient way to formalize tangent vectors in this setting is to consider time derivatives of curves on the manifold. A tangent vector at a point <math> \rho </math> would be the time derivative at 0 of a curve, <math> \rho(t) </math>, where <math> \rho(0) = \rho </math><ref name="Villani1"/>. Since we are dealing with a space of probability measures, additional restrictions need to be added in order to make our tangent space well-defined. For example, we would like our trajectory to satisfy the continuity equation <math> \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 </math>. There are many such vector fields that solve the continuity equation, so we can restrict to a vector field that minimizes kinetic energy, which is defined as <math> \int \rho|v|^2 </math>.
A convenient way to formalize tangent vectors in this setting is to consider time derivatives of curves on the manifold. A tangent vector at a point <math> \rho </math> would be the time derivative at 0 of a curve, <math> \rho(t) </math>, where <math> \rho(0) = \rho </math><ref name="Villani1"/>. Since we are dealing with a space of probability measures, additional restrictions need to be added in order to make our tangent space well-defined. For example, we would like our trajectory to satisfy the continuity equation <math> \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 </math>. There are many such vector fields that solve the continuity equation, so we can restrict to a vector field that minimizes kinetic energy, which is defined as <math> \int \rho|v|^2 </math>. This choice of tangent vectors is justified by the following lemma
 
:'''Lemma'''<ref name="Ambrosio, Gigli, Savaré"/> A vector <math> v \in L^2(\rho; X) </math> belongs to the tangent cone at <math> \rho </math> iff
:<math> \lVert v + w \rVert \ge \lVert v \rVert \; \forall w \in L^2(\rho; X) \; \mathrm{such that} \; \nabla \cdot (w\rho) = 0 </math>


==Riemannian Metric Induced by the Wasserstein Metric==
==Riemannian Metric Induced by the Wasserstein Metric==

Revision as of 13:10, 10 June 2020

Given a closed and convex space , two probability measures on the same space, , the 2-Wasserstein metric is defined as

where is a transport plan from to . The Wasserstein metric is indeed a metric in the sense that it satisfies the desired properties of a distance function between probability measures on . Moreover, the Wasserstein metric can be used to define a Riemannian metric on . Such a metric allows one to define angles and lengths of vectors at each point in our ambient space.

Tangent Space Induced by the Wasserstein Metric

A convenient way to formalize tangent vectors in this setting is to consider time derivatives of curves on the manifold. A tangent vector at a point would be the time derivative at 0 of a curve, , where [1]. Since we are dealing with a space of probability measures, additional restrictions need to be added in order to make our tangent space well-defined. For example, we would like our trajectory to satisfy the continuity equation . There are many such vector fields that solve the continuity equation, so we can restrict to a vector field that minimizes kinetic energy, which is defined as . This choice of tangent vectors is justified by the following lemma

Lemma[2] A vector belongs to the tangent cone at iff

Riemannian Metric Induced by the Wasserstein Metric

References

Cite error: <ref> tag with name "Villani2" defined in <references> is not used in prior text.