Geodesics and generalized geodesics: Difference between revisions
Jump to navigation
Jump to search
Line 14: | Line 14: | ||
<references> | <references> | ||
<ref name="Santambrogio"> [https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, ''Optimal Transport for Applied Mathematicians'', Chapter 1, pages | <ref name="Santambrogio"> [https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, ''Optimal Transport for Applied Mathematicians'', Chapter 1, pages 202-207] </ref> | ||
</references> | </references> |
Revision as of 12:41, 8 June 2020
Introduction
There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC) and provide a dynamic formulation of special case
Statement of Theorem
- Theorem.(Benamow-Brenier)[1] Let ,