Geodesics and generalized geodesics: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:


: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
<math> w_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))}{\int_{0}^{1}} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \mu(1)=\nu} </math>
<math> w_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))}{\int_{0}^{1}} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \mu(1)=\nu </math>


= References =
= References =

Revision as of 11:41, 8 June 2020


Statement of Theorem

Theorem.(Benamow-Brenier)[1] Let ,

References