Geodesics and generalized geodesics: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:


: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
<math> w_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))}{\int_{0}^{1}} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0 </math>
<math> w_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))}{\int_{0}^{1}} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \quad \mu(1)=\vu </math>


= References =
= References =

Revision as of 11:39, 8 June 2020


Statement of Theorem

Theorem.(Benamow-Brenier)[1] Let ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))}{\int_{0}^{1}} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \quad \mu(1)=\vu }

References