Kantorovich Dual Problem (for general costs): Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 41: Line 41:


: '''Theorem.'''<ref name=Santambrogio /> Let <math> \mu_{n} </math> be a sequence of tight probability measures on Polish space <math> X </math>. Then, there exists <math> \mu \in P(X) </math> and convergent subsequence <math> \mu_{n_{k}}</math> such that <math> \mu_{n_{k}} \rightarrow \mu </math> in the dual of <math> C_{b}(X) </math>. Conversely, every sequence <math> \mu_{n} \rightarrow \mu </math> is tight.
: '''Theorem.'''<ref name=Santambrogio /> Let <math> \mu_{n} </math> be a sequence of tight probability measures on Polish space <math> X </math>. Then, there exists <math> \mu \in P(X) </math> and convergent subsequence <math> \mu_{n_{k}}</math> such that <math> \mu_{n_{k}} \rightarrow \mu </math> in the dual of <math> C_{b}(X) </math>. Conversely, every sequence <math> \mu_{n} \rightarrow \mu </math> is tight.
The proof of the previous Theorem can be found in <ref name=Santaborgio>. For more information on <math> C_{b}(X) </math> duality, take a look at ...


==C-concave functions==
==C-concave functions==

Revision as of 10:53, 30 May 2020

The Kantorovich Dual Problem is one of the minimization problems in Optimal Transport. It is a dual problem of the Kantorovich Problem.

Introduction

The main advantage of Kantorovich Problem, in comparison to Monge Problem, is in the convex constraint property. It is possible to formulate the dual problem. It is formulated in the very general metric spaces called Polish spaces, i.e. complete separable metric spaces.

The Shipper's Problem

Type of this problem is stated by Caffarelli. We will provide the modern one.

During the COVID-19 pandemic, people are in the lockdown and it is the best time to enjoy a coffee time. All in all, it costs Amazon dollars to ship one box of necessary espresso capsules from place to place , i.e. from warehouses to homes. We want to optimize this expensive habit and consequently to solve appropriate Monge-Kantorovich problem. The mathematicians come to Amazon and propose the new kind of payment. For every box at place they will charge dollars and dollars to deliver at place . However, mathematicians will not reveal their shipping routes. Of course, in order for Amazon to accept this offer, the price The moral is that if the mathematicians are smart enough, they will be capable to make this shipment cheaper. This is provided by Kantorovich duality theorem. Take care that in the same cases, mathematicians will also give negative prices!

Statement of Theorem

This is the statement of the Theorem in the book "Topics in Optimal Transportation", by Cedric Villani.

Theorem.[1] Let X and Y be Polish spaces, let and , and let a cost function be lower semi-continuous.

Whenever and , define

.

Define to be the set of Borel probability measures on such that for all measurable sets and ,

, ,

and define to be the set of all measurable functions satisfying for almost everywhere in X and almost everywhere in Y.

Then .

Moreover, the infimum is attained. In addition it is possible to restrict and to be continuous and bounded.

Outline of the Proof

First, we assume that our spaces and are compact and that the cost function is continuous. The general case follows by an approximation argument.

The main idea is to use minimax principle, i.e. interchanging inf sup with sup inf in the proof. For this, we need some basic convex analysis techniques, namely Legendre-Fenchel transform (qoute needed) and Theorem on Fenchel-Rockafellar Duality (its proof is based on Hahn-Banach theorem consequence on separating convex sets.)

Take a note that at some point we use Arzela-Ascoli Theorem. In a non-compact space this is not possible. In order to evade compactness property, we have to use Prokhorov's theorem.

Theorem.[2] Let be a sequence of tight probability measures on Polish space . Then, there exists and convergent subsequence such that in the dual of . Conversely, every sequence is tight.

The proof of the previous Theorem can be found in Cite error: Closing </ref> missing for <ref> tag [2] </references>

  1. Cite error: Invalid <ref> tag; no text was provided for refs named Villani
  2. 2.0 2.1 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 9-16