Optimal Transport and Ricci curvature: Difference between revisions
No edit summary |
No edit summary |
||
Line 67: | Line 67: | ||
we therefore obtain our desired inequality. | we therefore obtain our desired inequality. | ||
==Ricci Curvature lower bounds and Entropy== | |||
In this section we will consider a generic measure metric space and we will try to define the notion of Ricci curvature lower bound. In literature was first extended the notion of sectional curvature thanks to the work of Alexandrov <ref>Alexandrov, A. D., A theorem on triangles in a metric space and some applications. | |||
Trudy Mat. Inst. Steklov, 38 1951</ref> comparing symmetries of the geodesics triangles, as expected this lower bounds are a natural extension of Sectional Curvature lower bounds, and they coincide in the setting of a Riemannian manifold. This construction became extremely interesting when (40 years later!) Grove and Petersen <ref> Grove, K. & Petersen, P., Manifolds near the boundary of existence. J. Differential | |||
Geom., 33 (1991), 379–394</ref> pointed out that this lower bounds are stable under the so called Gromov-Hausdorff convergence. It is well known that the family of Riemannian manifolds with Ricci lower bounds are not closed under the Gromov-Hausdorff convergence or any other reasonable notion of convergence. In the rest of this article I will follow Sturm papers <ref> K.-T. Sturm, “On the geometry of metric measure spaces”, Acta Math. 196, p. 65-131 (2006) </ref> and <ref> K.-T. Sturm, “On the geometry of metric measure spaces II”, Acta Math. 196, p. 133-177 (2006)</ref>. It is important to mention that at the same time of these papers the same results were obtained independently by Lott-Villani in <ref> Lott-Villani, Ricci curvature for metric-measure spaces via optimal transport Pages 903-991 from Volume 169 (2009)</ref>. | |||
Revision as of 21:56, 4 March 2022
Introduction and Motivation
This article provides a brief introduction into a connection of optimal transport and the curvature tensor of a Riemannian manifold. In fact, we are going to study the transport map where denotes a vector field on the manifold
These kind of maps appear very naturally in the context of optimal transport. Recall that in optimal transport one is particularly interested in the Monge Problem, being the following optimization problem: Let be a compact and connected Riemannian manifold. Let furthermore, denote two probability measures on which are absolutely continuous with respect to the measure on the manifold, induced by the metric. the Monge Problem is then given by
where the infimum is taken among all measurable maps and denotes the Metric on induced by Then the Monge Problem admits a unique solution Moreover, in that case
for some (see [1]for more details of this).
To conclude the introductory part of this article, let us also mention that these kind of transport maps, turned out to be useful in the area of geometric analysis. In fact, Simon Brendle could prove a Sobolev inequality on non compact Riemannian manifolds with nonnegative Ricci curvature, the proof of which makes use of defining a map which is of the type ( see proof of Theorem 1.1 in [2] for more details).
Curvature and Optimal Transport
Let be a Riemannian manifold. In this article we assume basic knowledge about the notions of curvature and geodesics on a manifold. For some background information on these topics, we refer the reader to Chapter three to five in [3].
The Goal of this article is to show the follwing
Proposition
Let where denotes a function on and let Then the following inequality holds true:
where is defined to be the mapping which is a geodesic.
Notice that this inequality involves the transport map and the Ricci curvature tensor and therefore constitutes a connection of the curvature and the optimal transport problem.
Remarks
Before we prove the Proposition, let us do some remarks: let be given and let for be an orthonormal basis. After doing parallel transport along , we have an orthonormal basis also in . Let denote the matrix representation of Then we have that where denotes the matrix Indeed, this follows right away from the fact that is a Jacobi field along for each
Proof of the Proposition
With the notation of the proposition stated above, we compute the derivative of as follows: which follows right away from Jacobi's formula. Let now . Since satisfies the matrix Jacobi equation as noticed in the preceding remark, we may infer a Ricatti equation for . Indeed, taking derivative of we obtain the following equation
Now observe that
In fact, notice that we only consider such that . Thus the inverse matrix exists for all in a small neighborhood of that . Then we have that
from which, after rearranging and multiplying with the inverse from the left, one gets the desired equality. Plugging this into the equation concerning the derivative of , we get that
Then, using the matrix Jacobi equation, we get that
so that
Notice that this is a first order ODE. Since is symmetric, we have that also satisfies the Ricatti equation with same initial condition, from which we get that .
Moreover, since the Ricatti equation is an equation of matrices, we can now take the trace in that equation. We therefore obtain that
As is symmetric, we get that ,
we therefore obtain our desired inequality.
Ricci Curvature lower bounds and Entropy
In this section we will consider a generic measure metric space and we will try to define the notion of Ricci curvature lower bound. In literature was first extended the notion of sectional curvature thanks to the work of Alexandrov [4] comparing symmetries of the geodesics triangles, as expected this lower bounds are a natural extension of Sectional Curvature lower bounds, and they coincide in the setting of a Riemannian manifold. This construction became extremely interesting when (40 years later!) Grove and Petersen [5] pointed out that this lower bounds are stable under the so called Gromov-Hausdorff convergence. It is well known that the family of Riemannian manifolds with Ricci lower bounds are not closed under the Gromov-Hausdorff convergence or any other reasonable notion of convergence. In the rest of this article I will follow Sturm papers [6] and [7]. It is important to mention that at the same time of these papers the same results were obtained independently by Lott-Villani in [8].
References
- ↑ A. Figalli, C. Villiani, OPTIMAL TRANSPORT AND CURVATURE, Notes for a CIME lecture course in Cetraro, June 2009
- ↑ S. Brendle, Sobolev inequalities in manifolds with nonnegative curvature, 2021. arXiv: 2009.13717.
- ↑ M. P. do Carmo, Riemannian Geometry,Mathematics: Theory & Applications. Birkhauser Boston, Inc., Boston, MA, 1992
- ↑ Alexandrov, A. D., A theorem on triangles in a metric space and some applications. Trudy Mat. Inst. Steklov, 38 1951
- ↑ Grove, K. & Petersen, P., Manifolds near the boundary of existence. J. Differential Geom., 33 (1991), 379–394
- ↑ K.-T. Sturm, “On the geometry of metric measure spaces”, Acta Math. 196, p. 65-131 (2006)
- ↑ K.-T. Sturm, “On the geometry of metric measure spaces II”, Acta Math. 196, p. 133-177 (2006)
- ↑ Lott-Villani, Ricci curvature for metric-measure spaces via optimal transport Pages 903-991 from Volume 169 (2009)