The continuity equation: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Undo revision 2614 by Nikolic (talk))
Tag: Undo
Line 11: Line 11:
== Continuity equation in optimal transport ==
== Continuity equation in optimal transport ==


Sometimes in the literature, authors use continuity equation, and transport equation as synonyms. On the other hand, in the optimal transport we differentiate these two and the standard Cauchy problem. Here, we present definitions and reasoning from the book by L.Ambrosio, E.Brué, and D.Semola<ref name="Ambrosio" />.
Sometimes in the literature, authors use continuity equation, and transport equation as synonyms. On the other hand, in the optimal transport we differentiate these two and the standard Cauchy problem. Here, we will present definitions and reasoning from the book by L.Ambrosio, E.Brué, and D.Semola<ref name="Ambrosio" />.


: '''Definition.''' A length of the curve <math> \omega:[0,1] \rightarrow X</math> is defined by
: '''Definition.''' A length of the curve <math> \omega:[0,1] \rightarrow X</math> is defined by
Line 32: Line 32:


                     <math> d(\omega(s),\omega(t))=|t-s|d(\omega(0),\omega(1)) </math> for all <math> t,s \in [0,1]</math>
                     <math> d(\omega(s),\omega(t))=|t-s|d(\omega(0),\omega(1)) </math> for all <math> t,s \in [0,1]</math>


== Applications ==
== Applications ==

Revision as of 05:00, 12 February 2022

Introduction

The continuity equation is an important equation in many science fields, for example, electromagnetism, computer vision, fluid dynamics etc. However, in the field of optimal transport, the formulation from fluid dynamics is of a large significance. This form helps to explain dynamics formulation of special cases of Wasserstein metric, and we will focus in this direction. For more general information about the continuity equation, look at the article Continuity equation.

Continuity equation in fluid dynamics

First, because of the intuition, we will introduce definition of the continuity equation in fluid mechanics. The exposition in this section will follow the book by Chorin and Marsden[1].

Suppose that mass of our fluid is conserved, through time. Denote Failed to parse (unknown function "\math"): {\displaystyle \rho <\math> as a density function and ... == Continuity equation in optimal transport == Sometimes in the literature, authors use continuity equation, and transport equation as synonyms. On the other hand, in the optimal transport we differentiate these two and the standard Cauchy problem. Here, we will present definitions and reasoning from the book by L.Ambrosio, E.Brué, and D.Semola<ref name="Ambrosio" />. : '''Definition.''' A length of the curve <math> \omega:[0,1] \rightarrow X} is defined by

                  

Secondly, we use the definition of length of a curve to introduce a geodesic curve.

Definition. A curve is said to be geodesic between and in if it minimizes the length among all the curves
such that and .

Since we have a definition of a geodesic in the general metric space, it is natural to think of Riemannian structure. It can be formally defined. More about this topic can be seen in the following article Formal Riemannian Structure of the Wasserstein_metric.

Now, we proceed with necessary definitions in order to be able to understand Wasserstein metric in a different way.

Definition. A metric space is called a length space if it holds
                    

A space is called geodesic space if the distance is attained for some curve .

Definition. In a length space, a curve is said to be constant speed geodesic between and in if it satisfies
                     for all 



Applications

Benamou-Bernier


Theorem.[2] Let . Then
      

References

Cite error: <ref> tag with name "Ambrosio" defined in <references> is not used in prior text.