|
|
Line 27: |
Line 27: |
| # Using the theorem, we know there does not exist a dominating function for the sequence <math>f_n</math> defined by <math>f_n(x) = n1_{[0, \frac{1}{n}]}</math> because <math>f_n \to 0</math> pointwise everywhere and <math>\lim_{n \to \infty} \int f_n = 1 \neq 0 = \int \lim_{n \to \infty} f_n </math>. <ref>Craig, Katy. ''MATH 201A Lecture 15''. UC Santa Barbara, Fall 2020.</ref> | | # Using the theorem, we know there does not exist a dominating function for the sequence <math>f_n</math> defined by <math>f_n(x) = n1_{[0, \frac{1}{n}]}</math> because <math>f_n \to 0</math> pointwise everywhere and <math>\lim_{n \to \infty} \int f_n = 1 \neq 0 = \int \lim_{n \to \infty} f_n </math>. <ref>Craig, Katy. ''MATH 201A Lecture 15''. UC Santa Barbara, Fall 2020.</ref> |
|
| |
|
| ==Another Application: Proof of Stirling's Formula== | | ==Another Application: Stirling's Formula== |
|
| |
|
| Stirling's formula states that <math display="block"> n! \sim \sqrt{2\pi n} n^ne^{-n} </math> as <math> n\rightarrow \infty </math>. We offer a proof here which relies on the Dominated Convergence Theorem. | | Stirling's formula states that <math display="block"> n! \sim \sqrt{2\pi n} n^ne^{-n} </math> as <math> n\rightarrow \infty </math>. We offer a proof here which relies on the Dominated Convergence Theorem. |
In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.
Statement Theorem
Consider the measure space
. Suppose
is a sequence in
such that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_n \to f}
a.e
- there exists
such that
a.e. for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}}
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \in L^1(\lambda)}
and
. [1]
Proof of Theorem
is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of
except on a null set. Also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |f| \leq g}
a.e., so
.
Now we have
a.e. and
a.e. to which we may apply Fatou's lemma to obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int g + \int f = \int \lim_{n \to \infty} (g + f_n) \leq \liminf_{n \to \infty} \int (g + f_n) = \int g + \liminf_{n \to \infty} \int f_n}
,
where the equalities follow from linearity of the integral and the inequality follows from Fatou's lemma. We similarly obtain
.
Since
, these imply
from which the result follows. [1] [2]
Applications of Theorem
- Suppose we want to compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty} \int_{[0, 1]} \frac{1 + nx^2}{(1 + x^2)^n} }
. [3] Denote the integrand
and see that
for all
and $1_{[0, 1]} \in L^1(\lambda)$. Note we only consider the constant function $1$ on $[0, 1]$. Applying the dominated convergence theorem, this allows us the move the limit inside the integral and compute it as usual.
- Using the theorem, we know there does not exist a dominating function for the sequence
defined by
because
pointwise everywhere and
. [4]
Another Application: Stirling's Formula
Stirling's formula states that

as

. We offer a proof here which relies on the Dominated Convergence Theorem.
Proof: Repeated integration by parts yields the formula

We shall estimate the integral above. Making the variable change

yields
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-n}^\infty (n+s)^ne^{-n-s}\ ds }
Simplifying, this becomes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^ne^{-n}\int_{-n}^\infty \left(1+\frac{s}{n}\right)^ne^{-s}\ ds}
Combining the integrand into a single exponential,

We want to show that this integral is asymptotic to the Gaussian. To this end, make the scaling substitution

to obtain

Since the function
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\log\left(1+\frac{x}{\sqrt{n}}\right) }
equals zero and has derivative

at the origin, and has second derivative

, applying the fundamental theorem of calculus twice yields

As a consequence we have the upper bounds

for some
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c>0 }
when

and

when

. These bounds keep the exponential in the integrand

bounded by an

function. By the Dominated Convergence Theorem,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\to\infty}\int_{-\sqrt{n}}^\infty \exp\left(n\log\left(1+\frac{x}{\sqrt{n}}\right) -\sqrt{n}x \right)\ dx = \int_{-\infty}^\infty \exp\left(-\frac{x^2}{2}\right)\ dx }
where the pointwise convergence

can be arrived at for all

by expanding the Taylor series of the logarithm. The final integral is a classic calculus integral which can be computed to equal

. This proves Stirling's formula. See
[5] for a more motivated account of this proof.
References
- ↑ 1.0 1.1 Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.3
- ↑ Craig, Katy. MATH 201A Lecture 15. UC Santa Barbara, Fall 2020.
- ↑ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.3.28
- ↑ Craig, Katy. MATH 201A Lecture 15. UC Santa Barbara, Fall 2020.
- ↑ Tao, Terence. 254A, Notes 0a: Stirling's Formula. What's New, 2 January 2010.