L1 Space: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 42: Line 42:
:<math>d(x_k,x)\to 0</math> as <math>k\to \infty</math>
:<math>d(x_k,x)\to 0</math> as <math>k\to \infty</math>
===Riesz-Fischer Theorem===
===Riesz-Fischer Theorem===
The vector space <math>L^1</math> is complete in its matric
The vector space <math>L^1</math> is complete in its matric.
====Proof====
See Stein and Shakarchi


==References==
==References==

Revision as of 10:02, 18 December 2020

Introduction

Let be a measure space. From our study of integration[1], we know that if are integrable functions, the following functions are also integrable:

  1. , for

This shows that the set of integrable functions on any measurable space is a vector space. Furthermore, integration is a linear functional on this vector space, ie a linear function sending elements in our vector space to , one would like to use integration to define a norm on our vector space. However, if one were to check the axioms for a norm, one finds integration fails to be a norm by taking almost everywhere, then . In other words, there are non zero functions which has a zero integral. This motivates our definition of to be the set of integrable functions up to equivalence to sets of measure zero.

Space

In this section, we will construct .

Definition

Let denote the set of integrable functions on , ie . Define an equivalence relation: if a.e. Then .

To make sense of the definition, we need the following proposition:

Proposition: Let , then the following are equivalent:

  1. for all
  2. a.e.

Proof[1]

Since a.e., a.e. Take a simple function, , such that , such must be a.e. Therefore,

Suppose the set does not have measure zero. Then either or has nonzero measure, where denotes and denotes . WLOG, assume has nonzero measure. Define the following sets , then from continuity from below, . This shows that there exists some such that , which implies that , contradicting 1.

With the proposition, we define our norm on to be . This is indeed a norm since:

  1. a.e

Completeness of space

A space with a matirc is said to be complete if for every Cauchy sequence in (that is, as ) there exist such that in the sense that

as

Riesz-Fischer Theorem

The vector space is complete in its matric.

Proof

See Stein and Shakarchi

References

  1. 1.0 1.1 Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.