Dominated Convergence Theorem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
==Proof of Theorem== | ==Proof of Theorem== | ||
<math>f</math> is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of <math>f_n</math> except on a null set. Also <math>f \leq g</math> a.e., so <math>f \in L^1(\lambda)</math>. | <math>f</math> is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of <math>f_n</math> except on a null set. Also <math>|f| \leq g</math> a.e., so <math>f \in L^1(\lambda)</math>. | ||
Now we have <math>g + f_n \geq 0</math> a.e. and <math>g - f_n \geq 0</math> a.e. to which we may apply Fatou's lemma to obtain | |||
<math>\int g + \int f = \int \lim_{n \to \infty} (g + f_n) \leq \liminf_{n \to \infty} \int (g + f_n) = \int g + \liminf_{n \to \infty} \int f_n</math>, | |||
where the equalities follow from linearity of the integral and the inequality follows from Fatou's lemma. We similarly obtain | |||
<math>\int g - \int f = \int \lim_{n \to \infty} (g - f_n) \leq \liminf_{n \to \infty} \int (g - f_n) = \int g - \limsup_{n \to \infty} \int f_n</math>. | |||
Since <math>\int g < +\infty</math>, these imply | |||
<math>\limsup_{n \to \infty} \int f_n \leq \int f \leq \liminf_{n \to \infty} \int f_n</math> from which the result follows. |
Revision as of 08:49, 18 December 2020
In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.
Theorem Statement
Consider the measure space . Suppose is a sequence in such that
- a.e
- there exists such that a.e. for all
Then and .
Proof of Theorem
is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of except on a null set. Also a.e., so .
Now we have a.e. and a.e. to which we may apply Fatou's lemma to obtain
,
where the equalities follow from linearity of the integral and the inequality follows from Fatou's lemma. We similarly obtain
.
Since , these imply
from which the result follows.