|
|
Line 34: |
Line 34: |
| ==Complete Measures== | | ==Complete Measures== |
| Consider a measure space <math>(X, \mathcal{M}, \mu)</math>. A set <math>E \in \mathcal{M}</math> is called a <math>\mu</math>-'''null set''' (or simply '''null set''') if <math>\mu(E) = 0</math>. A property <math>P(x)</math> holds <math>\mu</math>-'''almost everywhere''' (or simply '''almost everywhere''') if <math>N = \left\{x \in X : P(x) \text{ does not hold}\right\}</math> satisfies <math>N \in \mathcal{M}</math> and <math>\mu(N) = 0</math>. | | Consider a measure space <math>(X, \mathcal{M}, \mu)</math>. A set <math>E \in \mathcal{M}</math> is called a <math>\mu</math>-'''null set''' (or simply '''null set''') if <math>\mu(E) = 0</math>. A property <math>P(x)</math> holds <math>\mu</math>-'''almost everywhere''' (or simply '''almost everywhere''') if <math>N = \left\{x \in X : P(x) \text{ does not hold}\right\}</math> satisfies <math>N \in \mathcal{M}</math> and <math>\mu(N) = 0</math>. |
| | |
| | A measure is called '''complete''' if its domain include all subsets of null sets. An example of an incomplete measure can be constructed by taking <math>X = \{a. b, c\}</math> and <math>\mathcal{M} = \{\emptyset, \{a\}, \{b, c\}, X\}</math> with <math>\mu(E) = \begin{cases}0, E = \emptyset \lor E = \{a, b\}\\+\infty, E \neq \emptyset \land E \neq \{a, b\}\end{cases}</math>. The set <math>\{a, b\}</math> is a null set in this case, but <math>\{a\} \notin \mathcal{M}</math>. |
|
| |
|
| ==References== | | ==References== |
|
| |
|
| . | | . |
Revision as of 02:23, 18 December 2020
Definition
Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:
- ,
- Let be a disjoint sequence of sets such that each . Then, .
If the previous conditions are satisfied, the structure is called a measure space.
Additional Terminology
Let be a measure space.
- The measure is called finite if .
- Let . If there exist such that and (for all ), then is -finite for .
- If is -finite for , then is called -finite.
- Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .
Properties
Let be a measure space.
- Finite Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
- Monotonicity: Let such that . Then, .
- Subadditivity: Let . Then, .
- Continuity from Below: Let such that . Then, .
- Continuity from Above: Let such that and for some . Then, .
Examples
- Let be a non-empty set and . Let be any function from to . Given , define . Then, the function defined by is a measure. This measure has the following properties:
- The measure is semifinite if and only if for every .
- The measure is -finite if and only if is semifinite and is countable for every .
There are special cases of this measure that are frequently used:
- When fixing , the resulting measure is referred to as the counting measure.
- Let be fixed. By defining , the resulting measure is referred to as the point mass measure or the Dirac measure.
- Let be an uncountable set. Let be the -algebra of countable or co-cocountable sets of . The function defined as is a measure.
- Let be an infinite set. Let . The function defined as is not a measure. To verify that it is not a measure, it is sufficient to take , and note that . In other words. the countable additivity property is not satisfied. However, does satisfy the finite additivity property.
Complete Measures
Consider a measure space . A set is called a -null set (or simply null set) if . A property holds -almost everywhere (or simply almost everywhere) if satisfies and .
A measure is called complete if its domain include all subsets of null sets. An example of an incomplete measure can be constructed by taking and with . The set is a null set in this case, but .
References
.