Measures: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 14: | Line 14: | ||
==Properties== | ==Properties== | ||
Let <math>\left(X, \mathcal{M}, \mu\right)</math> be a measure space. | Let <math>\left(X, \mathcal{M}, \mu\right)</math> be a measure space. | ||
# ''' | # '''Finite Additivity:''' Let <math>\left\{E_k\right\}_{k = 1}^{n}</math> be a finite disjoint sequence of sets such that each <math>E_k \in \mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{n} E_k\right) = \sum_{k = 1}^{n} \mu\left(E_k\right)</math>. This follows directly from the defintion of measures by taking <math>E_{n+1} = E_{n+2} = ... = \emptyset</math>. | ||
# '''Monotonicity:''' Let <math>E, F \in \mathcal{M}</math> such that <math>E \subseteq F</math>. Then, <math>\mu\left(E\right) \leq \mu\left(F\right)</math>. | # '''Monotonicity:''' Let <math>E, F \in \mathcal{M}</math> such that <math>E \subseteq F</math>. Then, <math>\mu\left(E\right) \leq \mu\left(F\right)</math>. | ||
# '''Subadditivity:''' Let <math>\left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) \leq \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>. | # '''Subadditivity:''' Let <math>\left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) \leq \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>. |
Revision as of 19:07, 17 December 2020
Definition
Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:
- ,
- Let be a disjoint sequence of sets such that each . Then, .
If the previous conditions are satisfied, the structure is called a measure space.
Types of Measures
Let be a measure space.
- The measure is called finite if .
- Let . If there exist such that and (for all ), then is -finite for .
- If is -finite for , then is called -finite.
- Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .
Properties
Let be a measure space.
- Finite Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
- Monotonicity: Let such that . Then, .
- Subadditivity: Let . Then, .
- Continuity from Below: Let such that . Then, .
- Continuity from Above: Let such that and for some . Then, .
Examples
.
Complete Measures
.
References
.