Measures: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
This page is under construction.
==Definition==
==Definition==
Let <math>X</math> be a set and let <math>\mathcal{M} \subseteq 2^X</math> be a <math>\sigma</math>-algebra. Tbe structure <math>\left(X, \mathcal{M}\right)</math> is called a '''measurable space''' and each set in <math>\mathcal{M}</math> is called a '''measurable set'''. A '''measure on <math>(X, \mathcal{M})</math>''' (also referred to simply as a '''measure on <math>X</math>''' if <math>\mathcal{M}</math> is understood) is a function <math>\mu: \mathcal{M} \rightarrow [0, \infty]</math> that satisfies the following criteria:
Let <math>X</math> be a set and let <math>\mathcal{M} \subseteq 2^X</math> be a <math>\sigma</math>-algebra. Tbe structure <math>\left(X, \mathcal{M}\right)</math> is called a '''measurable space''' and each set in <math>\mathcal{M}</math> is called a '''measurable set'''. A '''measure on <math>(X, \mathcal{M})</math>''' (also referred to simply as a '''measure on <math>X</math>''' if <math>\mathcal{M}</math> is understood) is a function <math>\mu: \mathcal{M} \rightarrow [0, \infty]</math> that satisfies the following criteria:

Revision as of 18:40, 17 December 2020

Definition

Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets such that each . Then, .

If the previous conditions are satisfied, the structure is called a measure space.

Types of Measures

Let be a measure space.

  • The measure is called finite if .
  • Let . If there exist such that and (for all ), then is -finite for .
  • If is -finite for , then is called -finite.
  • Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .

Properties

Let be a measure space.

  1. Countable Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
  2. Monotonicity: Let such that . Then, .
  3. Subadditivity: Let . Then, .
  4. Continuity from Below: Let such that . Then, .
  5. Continuity from Above: Let such that and for some . Then, .

Examples

.

References

.