Measures: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


==Definition==
==Definition==
Let <math>X</math> be a set and let <math>\mathcal{M} \subseteq 2^X</math> be a <math>\sigma</math>-algebra. Tbe structure <math>\left(X, \mathcal{M}\right)</math> is called a '''measurable space''' and each set in <math>\mathcal{M}</math> is called a '''measurable set'''. A '''measure on <math>(X, \mathcal{M})</math>''' (also referred to simply as a '''measure on <math>X</math>''' if <math>\mathcal{M}</math> is understood) is a function <math>\mu: \mathcal{M} \rightarrow [0, \infty]</math> that satisfies the following criteria:
Let <math>X</math> be a set and let <math>\mathcal{M} \subseteq 2^X</math> be a <math>\sigma</math>-algebra. Tbe structure <math>\left(X, \mathcal{M}\right)</math> is called a '''measurable space''' and each set in <math>\mathcal{M}</math> is called a '''measurable set'''. A '''measure on <math>(X, \mathcal{M})</math>''' (also referred to simply as a '''measure on <math>X</math>''' if <math>\mathcal{M}</math> is understood) is a function <math>\mu: \mathcal{M} \rightarrow [0, \infty]</math> that satisfies the following criteria:
# <math>\mu\left(\emptyset\right) = 0</math>,
# <math>\mu\left(\emptyset\right) = 0</math>,
# Let <math>\left\{E_k\right\}_{k = 1}^{\infty}</math> be a disjoint sequence of sets such that each <math>E_k \in \mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) = \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>.
# Let <math>\left\{E_k\right\}_{k = 1}^{\infty}</math> be a disjoint sequence of sets such that each <math>E_k \in \mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) = \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>.
If the previous conditions are satisfied, the structure <math>\left(X, \mathcal{M}, \mu\right)</math> is called a '''measure space'''.
If the previous conditions are satisfied, the structure <math>\left(X, \mathcal{M}, \mu\right)</math> is called a '''measure space'''.
==Types of Measures==
Let <math>\left(X, \mathcal{M}, \mu\right)</math> be a measure space.
* The measure <math>\mu</math> is called '''finite''' if <math>\mu\left(X\right) < +\infty</math>.
* Let <math>E \in \mathcal{M}</math>. If there exist <math>\left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}</math>  such that <math>E = \cup_{k = 1}^{\infty} E_k</math> and <math>\mu\left(E_k\right) < + \infty</math> (for all <math>k \in \mathbb{N}</math>), then <math>E</math> is '''<math>\sigma</math>-finite for <math>\mu</math>'''.
* If there exists <math>\left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}</math>  such that <math>X = \cup_{k = 1}^{\infty} E_k</math> and <math>\mu\left(E_k\right) < + \infty</math> (for all <math>k \in \mathbb{N}</math>), then <math>\mu</math> is called '''<math>\sigma</math>-finite'''.


==Properties==
==Properties==

Revision as of 18:24, 17 December 2020

This page is under construction.

Definition

Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets such that each . Then, .

If the previous conditions are satisfied, the structure is called a measure space.

Types of Measures

Let be a measure space.

  • The measure is called finite if .
  • Let . If there exist such that and (for all ), then is -finite for .
  • If there exists such that and (for all ), then is called -finite.

Properties

Let be a measure space.

  1. Countable Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
  2. Monotonicity: Let such that . Then, .
  3. Subadditivity: Let . Then, .
  4. Continuity from Below: Let such that . Then, .
  5. Continuity from Above: Let such that and for some . Then, .

Examples

.

References

.