Cantor Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:


==References==
==References==
Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). "The Cantor function" (PDF). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.

Revision as of 04:19, 17 December 2020

Cantor ternary Function

if is the Cantor set on [0,1], then the Cantor function c : [0,1] → [0,1] can be defined as

Properties of Cantor Functions

  • Cantor Function is continuous everywhere, zero derivative almost everywhere.
  • lack of absolute continuity.
  • Monotonicity
  • Its value goes from 0 to 1 as its argument reaches from 0 to 1.

Cantor Function Alternative

The Cantor Function can be construct iteratively using homework construction.

References