Cantor Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:


==References==
==References==
*{{cite journal | last1=Dovgoshey | first1=O. | last2=Martio | first2=O. | last3=Ryazanov | first3=V. | last4=Vuorinen | first4=M. | title=The Cantor function | journal=Expositiones Mathematicae | publisher=Elsevier BV | volume=24 | issue=1 | year=2006 | issn=0723-0869 | doi=10.1016/j.exmath.2005.05.002 | pages=1–37 |mr=2195181 |url=http://users.utu.fi/vuorinen/REA12/107.pdf}}
Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). "The Cantor function" (PDF). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.

Revision as of 04:18, 17 December 2020

Cantor ternary Function

if is the Cantor set on [0,1], then the Cantor function c : [0,1] → [0,1] can be defined as

Properties of Cantor Functions

  • Cantor Function is continuous everywhere, zero derivative almost everywhere.
  • lack of absolute continuity.
  • Monotonicity
  • Its value goes from 0 to 1 as its argument reaches from 0 to 1.

Cantor Function Alternative

The Cantor Function can be construct iteratively using homework construction.

References

Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). "The Cantor function" (PDF). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.