Fatou's Lemma: Difference between revisions
Line 12: | Line 12: | ||
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | <math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | ||
Furthermore, by definition we have <math> g_n\leq f_n, \forall n \in \mathbb{N}</math>, | Furthermore, by definition we have <math> g_n\leq f_n, \forall n \in \mathbb{N}</math>, implying that <math> \int g_n\leq \int f_n </math>. | ||
Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: | Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: |
Revision as of 02:33, 12 December 2020
Statement
Suppose is a sequence of non-negative measurable functions, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_n: X \to [0,+\infty]} . Then:
. [1]
Proof[2]
Define for all .
By definition, and , so by Monotone Convergence Theorem,
.
Furthermore, by definition we have , implying that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int g_n\leq \int f_n } .
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow +\infty} \int g_n } exists, taking of both sides:
.