Fatou's Lemma: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
|||
Line 12: | Line 12: | ||
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | <math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | ||
Furthermore, by definition we have <math> g_n\leq f_n </math>, then <math> \int g_n\leq \int f_n </math>. | Furthermore, by definition we have <math> g_n\leq f_n \forall n \in \mathbb{N}</math>, then <math> \int g_n\leq \int f_n </math>. | ||
Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: | Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: |