|
|
Line 41: |
Line 41: |
|
| |
|
| Then | | Then |
| | |
| <math>\int f + \int g = \sum_{i=1}^n a_i \mu(E_i) + \sum_{j=1}^m b_j \mu(F_j)</math> | | <math>\int f + \int g = \sum_{i=1}^n a_i \mu(E_i) + \sum_{j=1}^m b_j \mu(F_j)</math> |
|
| |
|
|
| |
|
|
| |
|
| <math><\math> | | <math></math> |
|
| |
|
| ==References== | | ==References== |
Revision as of 05:34, 11 December 2020
The simplest functions you will ever integrate, hence the name.
Definition
Let
be a measure space. A measurable function
is a simple function[1] if
is a finite subset of
. The standard representation[1] for a simple function is given by
,
where
is the indicator function on the disjoint sets
that partition
, where
.
Integration of Simple Functions
These functions earn their name from the simplicity in which their integrals are defined[2]. Let
be the space of all measurable functions from
to
Then
where by convention, we let
. Note that
is equivalent to
and that some arguments may be omitted when there is no confusion.
Furthermore, for any
, we define
Properties of Simple Functions
Given simple functions
, the following are true[2]:
- if
;
;
- if
, then
;
- the function
is a measure on
.
Let
and
be simple functions with their corresponding standard representations.
We show the first claim. Suppose
. Then
, implying
. Similarly,
. Thus, the first statement holds for this case.
Suppose
. Then
.
Next, we show the second statement. Notice that
Failed to parse (unknown function "\math"): {\displaystyle E_i = \cup_{j=1}^m (E_i \cap F_j)<\math> and <math>F_j = \cup_{i=1}^n (F_j \cap E_i).}
Then
References
- ↑ 1.0 1.1 Craig, Katy. MATH 201A Lecture 11. UC Santa Barbara, Fall 2020.
- ↑ 2.0 2.1 Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.
- ↑ Craig, Katy. MATH 201A Lectures 12-13. UC Santa Barbara, Fall 2020.