Egerov's Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
==Statement==
==Statement==
Suppose <math>\{f_n\}</math> is a sequence of measurable functions defined on a measurable set <math> E </math> with <math> \mu(E)<\infty </math> and <math> f_n \rightarrow f  </math> a.e. on E.
Suppose <math> \mu </math> is a locally finite Borel measure and <math>\{f_n\}</math> is a sequence of measurable functions defined on a measurable set <math> E </math> with <math> \mu(E)<\infty </math> and <math> f_n \rightarrow f  </math> a.e. on E.


Then:
Then:
Line 12: Line 12:
Now fix any <math> \delta>0 </math>. We choose <math> n\geq N</math> such that <math>\frac{1}{n}\leq \delta </math>. Since <math> n \geq N </math> if <math> x \in \tilde{A}_\epsilon </math> then <math> x \in E_{k_n}^n </math>. And by definition if <math>x \in E_{k_n}^n </math> then <math>|f_j(x)-f(x)|<\frac{1}{n}<\delta </math> whenever <math> j > k_n </math>. Hence <math> f_n \rightarrow f</math> uniformly on <math> \tilde{A}_\epsilon </math>.
Now fix any <math> \delta>0 </math>. We choose <math> n\geq N</math> such that <math>\frac{1}{n}\leq \delta </math>. Since <math> n \geq N </math> if <math> x \in \tilde{A}_\epsilon </math> then <math> x \in E_{k_n}^n </math>. And by definition if <math>x \in E_{k_n}^n </math> then <math>|f_j(x)-f(x)|<\frac{1}{n}<\delta </math> whenever <math> j > k_n </math>. Hence <math> f_n \rightarrow f</math> uniformly on <math> \tilde{A}_\epsilon </math>.


Finally, we use the fact that ha
Finally, since <math>\tilde{A}_\epsilon </math> is measurable, using HW5 problem 6 there exists a closed set <math>A_\epsilon\subset \tilde{A}_\epsilon </math> such that <math>\mu(\tilde{A}_\epsilon\setminus A_\epsilon)<\frac{\epsilon}{2} </math>. Therefore <math> \mu(E\setminus A_\epsilon)<\epsilon </math> and <math> f_n \rightarrow f </math> on <math> A_\epsilon/math>
 
==Proof==
For any <math> n \in \mathbb{N} </math>, let <math> g_n=\inf_{k\geq n} f_k </math>.
 
By definition, <math> \liminf_{n\rightarrow +\infty} f_n= \lim_{n\rightarrow +\infty} (inf_{k\geq n}f_k)=\lim_{n\rightarrow +\infty} g_n</math>.
And <math> g_n\leq g_{n+1}, \forall n \in \mathbb{N} </math>, so by Monotone Convergence Theorem,
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>.
 
Furthermore, by definition we have <math> g_n\leq f_n </math>, then <math> \int g_n\leq \int f_n </math>.
 
Since <math> \lim_{n\rightarrow +\infty} </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides:
<math> \int \liminf_{n\rightarrow +\infty} f_n=\lim_{n\rightarrow +\infty}= \liminf_{n\rightarrow +\infty} \int g_n \leq \liminf_{n\rightarrow +\infty} \int f_n</math>.
 
==References==
==References==

Revision as of 09:38, 7 December 2020

Statement

Suppose is a locally finite Borel measure and is a sequence of measurable functions defined on a measurable set with and a.e. on E.

Then: Given we may find a closed subset such that and uniformly on

Proof

WLOG assume for all since the set of points at which is a null set. Fix and for we define Now for fixed we have that and . Therefore using continuity from below we may find a such that . Now choose so that and define . By countable subadditivity we have that .

Now fix any . We choose such that . Since if then . And by definition if then whenever . Hence uniformly on .

Finally, since is measurable, using HW5 problem 6 there exists a closed set such that . Therefore and on <math> A_\epsilon/math>

References