Monotone Convergence Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 6: Line 6:


==Proof==
==Proof==
First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n <\math>.
First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n </math>.


Since <math> f_{n} \leq f_{n+1} </math> for all <math>n \in \mathbb{N}</math>, we have <math> f_n\leq \lim_{n\rightarrow +\infty} f_n </math> and further <math> \int f_n\leq \int \lim_{n\rightarrow +\infty} f_n </math>.
Since <math> f_{n} \leq f_{n+1} </math> for all <math>n \in \mathbb{N}</math>, we have <math> f_n\leq \lim_{n\rightarrow +\infty} f_n </math> and further <math> \int f_n\leq \int \lim_{n\rightarrow +\infty} f_n </math>.
Line 12: Line 12:
Sending <math>n\rightarrow +\infty</math> on LHS gives us the result.
Sending <math>n\rightarrow +\infty</math> on LHS gives us the result.


Then we prove <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n <\math>.
Then we only need to prove that <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n </math>.


==References==
==References==

Revision as of 05:40, 6 December 2020

Theorem

Suppose is a sequence of non-negative measurable functions, such that for all . Furthermore, . Then

[1]

Proof

First we prove that .

Since for all , we have and further .

Sending on LHS gives us the result.

Then we only need to prove that .

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2