Monotone Convergence Theorem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
(→Proof) |
||
Line 6: | Line 6: | ||
==Proof== | ==Proof== | ||
First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n < | First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n </math>. | ||
Since <math> f_{n} \leq f_{n+1} </math> for all <math>n \in \mathbb{N}</math>, we have <math> f_n\leq \lim_{n\rightarrow +\infty} f_n </math> and further <math> \int f_n\leq \int \lim_{n\rightarrow +\infty} f_n </math>. | Since <math> f_{n} \leq f_{n+1} </math> for all <math>n \in \mathbb{N}</math>, we have <math> f_n\leq \lim_{n\rightarrow +\infty} f_n </math> and further <math> \int f_n\leq \int \lim_{n\rightarrow +\infty} f_n </math>. | ||
Line 12: | Line 12: | ||
Sending <math>n\rightarrow +\infty</math> on LHS gives us the result. | Sending <math>n\rightarrow +\infty</math> on LHS gives us the result. | ||
Then we prove <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n < | Then we only need to prove that <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n </math>. | ||
==References== | ==References== |
Revision as of 05:40, 6 December 2020
Theorem
Suppose is a sequence of non-negative measurable functions, such that for all . Furthermore, . Then
Proof
First we prove that .
Since for all , we have and further .
Sending on LHS gives us the result.
Then we only need to prove that .
References
- ↑ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2