Monotone Convergence Theorem: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
No edit summary |
||
Line 8: | Line 8: | ||
First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n <\math>. | First we prove that <math> \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n <\math>. | ||
Since | Since <math> f_{n} \leq f_{n+1} </math> for all <math>n \in \mathbb{N}</math>, we have <math> f_n\leq \lim_{n\rightarrow +\infty} f_n </math> and further <math> \int f_n\leq \int \lim_{n\rightarrow +\infty} f_n </math>. | ||
Sending <math>n\rightarrow +\infty</math> on LHS gives us the result. | |||
Then we prove <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n <\math>. | |||
==References== | ==References== |
Revision as of 05:37, 6 December 2020
Theorem
Suppose is a sequence of non-negative measurable functions, such that for all . Furthermore, . Then
Proof
First we prove that Failed to parse (unknown function "\math"): {\displaystyle \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n <\math>. Since <math> f_{n} \leq f_{n+1} } for all , we have and further .
Sending on LHS gives us the result.
Then we prove <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n <\math>.
References
- ↑ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2