Fatou's Lemma: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
(→Proof) |
||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
For <math> \forall n \in \mathbb{N} </math> | For any <math> n \in \mathbb{N} </math>, let <math> g_n=\inf_{k\geq n} f_k </math>. | ||
By definition, <math> \liminf_{n\rightarrow +\infty} f_n= \lim_{n\rightarrow +\infty} (inf_{k\geq n}f_k)=\lim_{n\rightarrow +\infty} g_n</math>. | |||
And <math> g_n\leq g_{n+1}, \forall n \in \mathbb{N} </math>, so by Monotone Convergence Theorem, | |||
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | |||
Furthermore, by definition we have <math> g_n\leq f_n </math>, then <math> \int g_n\leq \int f_n </math>. | |||
Since <math> \lim_{n\rightarrow +\infty} </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: | |||
<math> \int \liminf_{n\rightarrow +\infty} f_n=\lim_{n\rightarrow +\infty}= \liminf_{n\rightarrow +\infty} \int g_n \leq \liminf_{n\rightarrow +\infty} \int f_n</math>. | |||
==References== | ==References== |
Revision as of 05:28, 6 December 2020
Statement
Suppose is a sequence of non-negative measurable functions, . Then: . [1]
Proof
For any , let .
By definition, . And , so by Monotone Convergence Theorem, .
Furthermore, by definition we have , then .
Since exists, taking of both sides: .
References
- ↑ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2