Fatou's Lemma: Difference between revisions
Jump to navigation
Jump to search
(Created page with "===Theorem=== Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math>. Then: <math> \int \liminf_{n\rightarrow +...") |
No edit summary |
||
Line 2: | Line 2: | ||
Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math>. | Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math>. | ||
Then: | Then: | ||
<math> \int \liminf_{n\rightarrow +\infty} f_n \leq \liminf_{n\rightarrow +\infty}\int f_n </math>. | <math> \int \liminf_{n\rightarrow +\infty} f_n \leq \liminf_{n\rightarrow +\infty}\int f_n </math>. <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §2.2 </ref> | ||
<ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §2.2 </ref> |