Measurable function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 9: Line 9:
* Let <math>(X,\mathcal{M})</math> and <math>(Y,\mathcal{N})</math> be measure spaces. Suppose that <math>\mathcal{N}</math> is generated by a set <math>\varepsilon</math>. A map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable if <math>f^{-1}(E) \in \mathcal{M}</math> for all <math>E \in \varepsilon.</math>
* Let <math>(X,\mathcal{M})</math> and <math>(Y,\mathcal{N})</math> be measure spaces. Suppose that <math>\mathcal{N}</math> is generated by a set <math>\varepsilon</math>. A map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable if <math>f^{-1}(E) \in \mathcal{M}</math> for all <math>E \in \varepsilon.</math>
* Let <math>(X,\mathcal{M})</math>, <math>(Y,\mathcal{N})</math>, and <math>(Z,\mathcal{P})</math> be measure spaces. If a map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable and <math>g: Y \to Z</math> is <math>(N,\mathcal{P})</math>-measurable, then <math>g\circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable.  
* Let <math>(X,\mathcal{M})</math>, <math>(Y,\mathcal{N})</math>, and <math>(Z,\mathcal{P})</math> be measure spaces. If a map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable and <math>g: Y \to Z</math> is <math>(N,\mathcal{P})</math>-measurable, then <math>g\circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable.  
* Let <math>(X,\mathcal{M})</math>, <math>(Y,\mathcal{N}_1)</math>, <math>(Y,\mathcal{N}_2)</math>, and <math>(Z,\mathcal{P})</math> be measure spaces.  
* Let <math>(X,\mathcal{M})</math>, <math>(Y,\mathcal{N}_1)</math>, <math>(Y,\mathcal{N}_2)</math>, and <math>(Z,\mathcal{P})</math> be measure spaces. If a map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N}_1)</math>-measurable and <math>g: Y \to Z</math> is <math>(\mathcal{N}_2,\mathcal{P})</math>-measurable, then <math>g \circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable when <math>\mathcal{N}_2 \subseteq \mathcal{N}_1.</math> In particular, if <math>f</math> is Borel measurable and <math>g</math> is Lebesgue measurable, then <math>g \circ f</math> is Lebesgue measurable.
If a map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N}_1)</math>-measurable and <math>g: Y \to Z</math> is <math>(\mathcal{N}_2,\mathcal{P})</math>-measurable, then <math>g \circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable when <math>\mathcal{N}_2 \subseteq \mathcal{N}_1.</math> In particular, if <math>f</math> is Borel measurable and <math>g</math> is Lebesgue measurable, then <math>g \circ f</math> is Lebesgue measurable.

Revision as of 05:20, 16 November 2020

Let and be measure spaces. A map is -measurable if for all

Examples of measurable functions

  • A function is called a Lebesgue measurable function if is - measurable, where is the class of Lebesgue measurable sets and is Borel -algebra.
  • A function is called Borel measurable if is -measurable.


Basic theorems of measurable functions

  • Let and be measure spaces. Suppose that is generated by a set . A map is -measurable if for all
  • Let , , and be measure spaces. If a map is -measurable and is -measurable, then is -measurable.
  • Let , , , and be measure spaces. If a map is -measurable and is -measurable, then is -measurable when In particular, if is Borel measurable and is Lebesgue measurable, then is Lebesgue measurable.