Measurable function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math>
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math>


==Examples of measurable function==
==Examples of measurable functions==
*
* A function <math>f: \mathbb{R} \to \overline{\mathbb{R}}</math> is called a '''Lebesgue measurable function''' if <math>f</math> is <math>(L, B_{\overline\mathbb{R}}}</math>- measurable.

Revision as of 21:31, 14 November 2020

Let and be measure spaces. A map is -measurable if for all

Examples of measurable functions

  • A function is called a Lebesgue measurable function if is Failed to parse (syntax error): {\displaystyle (L, B_{\overline\mathbb{R}}}} - measurable.