Measurable function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math> | Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math> | ||
==Examples of measurable | ==Examples of measurable functions== | ||
* | * A function <math>f: \mathbb{R} \to \overline{\mathbb{R}}</math> is called a '''Lebesgue measurable function''' if <math>f</math> is <math>(L, B_{\overline\mathbb{R}}}</math>- measurable. |
Revision as of 21:31, 14 November 2020
Let and be measure spaces. A map is -measurable if for all
Examples of measurable functions
- A function is called a Lebesgue measurable function if is Failed to parse (syntax error): {\displaystyle (L, B_{\overline\mathbb{R}}}} - measurable.