Measurable function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Created page with "Definition. Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is <math>(M,N)</math>-measurable if <math>f^{-1}(E) \in M</math> for...")
 
No edit summary
Line 1: Line 1:
Definition. Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is <math>(M,N)</math>-measurable if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math>
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math>

Revision as of 21:27, 14 November 2020

Let and be measure spaces. A map is -measurable if for all