Measurable function: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Definition. Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is <math>(M,N)</math>-measurable if <math>f^{-1}(E) \in M</math> for...") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math> |
Revision as of 21:27, 14 November 2020
Let and be measure spaces. A map is -measurable if for all