Lower semicontinuous functions: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 1: Line 1:
Let <math> X </math> be a metric space (or more generally a topological space). A function <math> f : X \to \mathbb{R} \cup \{ +\infty \} </math> is '''lower semicontinuous''' if  
Let <math> X </math> be a metric space (or more generally a topological space). A function <math> f : X \to \mathbb{R} \cup \{ +\infty \} </math> is '''lower semicontinuous''' if  
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math>
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math>
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 3''. UC Santa Barbara, Fall 2020.</ref>
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref>


==References==
==References==

Revision as of 20:45, 26 October 2020

Let be a metric space (or more generally a topological space). A function is lower semicontinuous if

is open in for all .[1]

References

  1. Craig, Katy. MATH 201A HW 1. UC Santa Barbara, Fall 2020.