Lower semicontinuous functions: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
Let <math> X </math> be a metric space (or more generally a topological space). A function <math> f : X \to \mathbb{R} \cup \{ +\infty \} </math> is '''lower semicontinuous''' if | Let <math> X </math> be a metric space (or more generally a topological space). A function <math> f : X \to \mathbb{R} \cup \{ +\infty \} </math> is '''lower semicontinuous''' if | ||
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math> | :<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math> | ||
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW | is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref> | ||
==References== | ==References== |