Outer measure: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:


: '''Definition.''' A set <math> A \subset X </math> is called <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all  <math> E \subset X </math>.
: '''Definition.''' A set <math> A \subset X </math> is called <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all  <math> E \subset X </math>.
==Constructing a measure from an outer measure==


==References==
==References==

Revision as of 17:58, 20 October 2020

Definition. Let be a nonempty set. An outer measure [1] on the set is a function such that
  • ,
  • if ,


Definition. A set is called -measurable if for all .

Constructing a measure from an outer measure

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, Section 1.4