Outer measure: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">[Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Chapter 1.]</ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
* <math> \mu^* ( \emptyset) = 0 </math>
* <math> \mu^* ( \emptyset) = 0 </math>
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>

Revision as of 14:26, 20 October 2020

Let be a nonempty set. An outer measure [1] on the set is a function such that

  • if


References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, Section 1.4