Fenchel-Moreau and Primal/Dual Optimization Problems: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
m (Protected "Fenchel-Moreau and Primal/Dual Optimization Problems" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)) [cascading])
 
(No difference)

Latest revision as of 04:39, 28 February 2022

The Fenchel-Moreau Theorem[1] is a fundamental result in convex analysis, characterizing the class of functions for which a function equals its biconjugate. A key consequence of this theorem is that is provides sufficient conditions for the equivalence of primal and dual optimization problems.[2]

Fenchel-Moreau Theorem

Given a normed vector space X and , then

Background on Convex Conjugate Functions

Let X be a normed vector space, and let X* denote its topological dual. Given an extended real-valued function , its convex conjugate is defined by

An immediate consequence of this definition is Young's Inequality,

Furthermore, it follows directly from the definition that, for any function f, its conjugate function f* is convex and lower semicontinuous.

In a similar way, for any function f, its the biconjugate function is defined by

As above, the biconjugate function f** is always convex and lower semicontinuous. Furthermore, by a second application of Young's inequality, we have

Since f** is always convex and lower semicontinuous, in order for equality to hold for all x, it is necessary that f also be convex and lower semicontinuous. The heart of Fenchel-Moreau Theorem is that this condition is not just necessary, but sufficient.

Application to Primal/Dual Optimization Problems

An important consequence of the Fenchel-Moreau Theorem is that it provides sufficient conditions for the equivalence of primal and dual optimization problems. Given a normed vector space X and a lower semicontinuous, convex function , the primal optimization problem is given by

The corresponding dual problem arises from a suitable ``perturbation" of the primal problem, subject to a parameter uU, where U is also a normed vector space. In particular, let be a proper convex function so that . Then the corresponding primal and dual problems may be written as

The formulation of these problems becomes even simpler from the perspective of the inf-projection . With this notation, the primal and dual problems are given by

Therefore, by the Fenchel-Moreau theorem, a sufficient condition for equivalence of the primal and dual problems is that the inf-projetion function P(u) is convex and lower semicontinuous.

References