New article ideas: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Created page with "==Stort Articles (Choose 3)== * Monge Problem (for general costs) * Kantorovich Problem (for general costs) * Kantorovich Dual Problem (for <math>c(x,y) = |x-y|^p, p \geq 1</m...")
 
 
(135 intermediate revisions by 18 users not shown)
Line 1: Line 1:
==Stort Articles (Choose 3)==
Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.
* Monge Problem (for general costs)
* Kantorovich Problem (for general costs)
* Kantorovich Dual Problem (for <math>c(x,y) = |x-y|^p, p \geq 1</math>)
* Want to write about something that's not listed here? Email me!


==Long Articles (Choose 2)==
Want to write about something that's not listed here? Email me!
 
==The Optimal Transport Problem==
 
==Variants of Optimal Transport Problems==
* Entropic optimal transport and the Schrödinger bridge problem [https://www.math.ucdavis.edu/~saito/data/acha.read.s19/leonard_survey-schroedinger-problem-optxport.pdf][https://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf]
* Multi-marginal optimal transport and density functional theory
 
==The 2-Wasserstein Metric==
* Benamou-Brenier dynamic characterization of W2; Santambrogio (187-198); Villani (238-249) (make sure to cite existing wiki article on [[Geodesics and generalized geodesics]])
* Displacement convexity; Santambrogio (249-251,271-276); Villani (150-154) (make sure to cite existing wiki article on [[Geodesics and generalized geodesics]])
* 2-Wasserstein metric and Ricci curvature; Figalli-Glaudo (112-114); [https://cedricvillani.org/sites/dev/files/old_images/2012/08/P12.CIME_.pdf]
 
==Numerical Methods for Optimal Transport==
* Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
* Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)
 
==Mathematical Foundations:==
* Gradient flows in metric spaces; Figalli-Glaudo (107-108); Santambrogio, 'OT for Applied Mathematicians' (285-290); Santambrogio, 'Euclidean, Metric, and Wasserstein GFs' (90-107; don't need to cover all topics, just what interests you)
 
==Applications:==
* Wasserstein Generative Adversarial Networks [https://leon.bottou.org/publications/pdf/icml-2017.pdf], [https://nemo.kiwi/studies/M1/ML/report.pdf]
* Optimal transport methods in economics; see introduction of book by Galichon (I have a copy you can borrow) and [https://arxiv.org/abs/2107.04700]
* Quantization and Lloyd's algorithm [https://hal.archives-ouvertes.fr/hal-03256039/document], [https://link.springer.com/content/pdf/10.1007/978-3-030-01947-1_7.pdf], [https://link.springer.com/content/pdf/10.1007/978-3-319-99689-9_6.pdf]

Latest revision as of 07:46, 7 February 2022

Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.

Want to write about something that's not listed here? Email me!

The Optimal Transport Problem

Variants of Optimal Transport Problems

  • Entropic optimal transport and the Schrödinger bridge problem [1][2]
  • Multi-marginal optimal transport and density functional theory

The 2-Wasserstein Metric

  • Benamou-Brenier dynamic characterization of W2; Santambrogio (187-198); Villani (238-249) (make sure to cite existing wiki article on Geodesics and generalized geodesics)
  • Displacement convexity; Santambrogio (249-251,271-276); Villani (150-154) (make sure to cite existing wiki article on Geodesics and generalized geodesics)
  • 2-Wasserstein metric and Ricci curvature; Figalli-Glaudo (112-114); [3]

Numerical Methods for Optimal Transport

  • Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
  • Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)

Mathematical Foundations:

  • Gradient flows in metric spaces; Figalli-Glaudo (107-108); Santambrogio, 'OT for Applied Mathematicians' (285-290); Santambrogio, 'Euclidean, Metric, and Wasserstein GFs' (90-107; don't need to cover all topics, just what interests you)

Applications:

  • Wasserstein Generative Adversarial Networks [4], [5]
  • Optimal transport methods in economics; see introduction of book by Galichon (I have a copy you can borrow) and [6]
  • Quantization and Lloyd's algorithm [7], [8], [9]