Modes of Convergence: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== Relevant Definitions<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 17''. UC Santa Barbara, Fall 2020.</ref>== | == Relevant Definitions<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 17''. UC Santa Barbara, Fall 2020.</ref>== | ||
Denote our measure space as <math> (X, \mathcal{M}, \mu) </math>. Note that a property p | Denote our measure space as <math> (X, \mathcal{M}, \mu) </math>. Note that a property p holds for almost every <math>x \in X</math> if the set <math>\{x \in X: p \text{ doesn't hold }\}</math> has measure zero. | ||
* A sequence of measurable functions <math>\{f_n \}</math> converges pointwise if <math>f_n(x) \to f(x) </math> for all <math>x \in X </math>. | * A sequence of measurable functions <math>\{f_n \}</math> converges pointwise if <math>f_n(x) \to f(x) </math> for all <math>x \in X </math>. | ||
* A sequence of measureable functions <math>\{f_n \}</math> converges uniformly if <math>\sup_{x \in X} |f_n(x) - f(x)| \to 0 </math>. | * A sequence of measureable functions <math>\{f_n \}</math> converges uniformly if <math>\sup_{x \in X} |f_n(x) - f(x)| \to 0 </math>. | ||
*A sequence of measurable functions <math>\{f_n \}</math> converges to <math> f</math> pointwise almost everywhere if <math> f_n (x) \to f(x)</math> for almost every <math> x </math>, or <math> \mu( \{x: f(x) \neq \lim_{n \to \infty} f(x) \}) =0</math>. | *A sequence of measurable functions <math>\{f_n \}</math> converges to <math> f</math> pointwise almost everywhere if <math> f_n (x) \to f(x)</math> for almost every <math> x </math>, or <math> \mu( \{x: f(x) \neq \lim_{n \to \infty} f(x) \}) =0</math>. | ||
*A sequence of measurable functions <math>f_n</math> converges in <math>L^1</math> if <math>\int |f_n - f| \to 0.</math> | *A sequence of measurable functions <math>\{f_n \}</math> converges in <math>L^1</math> if <math>\int |f_n - f| \to 0.</math> | ||
check [[Convergence in Measure]] for convergence in measure. | check [[Convergence in Measure]] for convergence in measure. | ||
== Relevant Properties <ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>== | == Relevant Properties <ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>== | ||
* <math>f_n \to f</math> through uniform | * <math>f_n \to f</math> through uniform convergence implies <math> f_n \to f</math> through pointwise convergence, which in turn implies <math>f_n \to f</math> pointwise a.e. convergence. | ||
* <math>f_n \to f</math> through <math> L^1</math> convergence implies <math>f_n \to f</math> through pointwise a.e convergence up to a subsequence. | * <math>f_n \to f</math> through <math> L^1</math> convergence implies <math>f_n \to f</math> through pointwise a.e convergence up to a subsequence. | ||
* <math>f_n \to f</math> Pointwise a.e. convergence, equipped with dominating function, implies <math>f_n \to f</math> in <math>L^1</math>. To see | * <math>f_n \to f</math> Pointwise a.e. convergence, equipped with dominating function, implies <math>f_n \to f</math> in <math>L^1</math>. To see the proof and examples of why we need a dominating function, read [[Dominated Convergence Theorem]]. | ||
* [[Convergence in Measure]] lists relationships between convergence in measure and other forms of convergence. | * [[Convergence in Measure]] lists relationships between convergence in measure and other forms of convergence. | ||
== Proof <math>f_n \to f, \text{ in }L^1</math> implies <math>f_n \to f </math> in measure== | |||
Fix <math> \epsilon >0, </math> define | |||
<math>E_{n, \epsilon} = \{x: |f_n(x) - f(x)| \geq \epsilon\}</math> | |||
We can see that that | |||
<math> \int_{E_{n,\epsilon}}\epsilon \leq \int_{E_{n,\epsilon}}|f_n - f|\leq \int|f_n - f|. </math> | |||
we can see by <math>L^1</math> convergence that <math>\lim_{n \to \infty}\int |f_n-f| = 0, </math> | |||
meaning that | |||
<math> \lim_{n \to \infty} \int_{E_{n,\epsilon}}\epsilon = \lim_{n \to \infty}\epsilon \mu(E_{n,\epsilon}) = 0,</math> | |||
or | |||
<math> \lim_{n \to \infty} \mu(E_{n,\epsilon}) = \lim_{n \to \infty}\mu(\{x: |f_n(x) - f(x)| \geq \epsilon\}) = 0 </math>. | |||
Hence the proposition follows. | |||
== Proof <math>f_n \to f</math> through <math> L^1</math> convergence implies <math>f_n \to f</math> pointwise a.e convergence up to a subsequence. == | |||
<math> L^1</math> convergence means <math>f_n \to f</math> in measure. Because <math>f_n \to f</math> in measure, there exists a subsequence <math>f_{n_k}</math> such that <math>f_{n_k} \to f</math> pointwise a.e. | |||
== Example: <math>f_n \to f</math> in measure does not imply convergence in <math>L^1 </math>== | |||
Let <math> f_n:= \frac{1}{n}1_{[0,n]} </math>. Then <math> f_n \to 0 </math> in measure, but <math> f_n </math> does not converge to 0 in <math> L^1 </math>. This is because <math> \int f_n d\lambda = 1 </math> for all <math> n </math>. | |||
==References== |
Latest revision as of 03:59, 19 December 2020
Relevant Definitions[1]
Denote our measure space as . Note that a property p holds for almost every if the set has measure zero.
- A sequence of measurable functions converges pointwise if for all .
- A sequence of measureable functions converges uniformly if .
- A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
- A sequence of measurable functions converges in if
check Convergence in Measure for convergence in measure.
Relevant Properties [2]
- through uniform convergence implies through pointwise convergence, which in turn implies pointwise a.e. convergence.
- through convergence implies through pointwise a.e convergence up to a subsequence.
- Pointwise a.e. convergence, equipped with dominating function, implies in . To see the proof and examples of why we need a dominating function, read Dominated Convergence Theorem.
- Convergence in Measure lists relationships between convergence in measure and other forms of convergence.
Proof implies in measure
Fix define We can see that that
we can see by convergence that meaning that
or . Hence the proposition follows.
Proof through convergence implies pointwise a.e convergence up to a subsequence.
convergence means in measure. Because in measure, there exists a subsequence such that pointwise a.e.
Example: in measure does not imply convergence in
Let . Then in measure, but does not converge to 0 in . This is because for all .