Simple Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:


==Definition==
==Definition==
Let <math> (X, \mathcal{M}, \mu) </math> be a measure space. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> if <math>f(X)</math> is a finite subset of <math> \mathbb{R}</math>. The standard representation<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> for a simple function is given by  
Let <math> (X, \mathcal{M}, \mu) </math> be a [[Measures#Definition|measure space]]. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> if <math>f(X)</math> is a finite subset of <math> \mathbb{R}</math>. The standard representation<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> for a simple function is given by  


<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,
<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,


where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\}) \in \mathcal{M}</math> that partition <math>X</math>, where <math>f(X) = \{c_1, \dots, c_n\}</math>.
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\}) \in \mathcal{M}</math> that partition <math>X</math>, where <math>f(X) = \{c_1, \dots, c_n\}</math>.
==Examples==
Consider the functions <math>f, g: \mathbb{R} \rightarrow \mathbb{R}</math> determined by <math>f(x) = 2</math><ref name="Lecture 12">Craig, Katy. ''MATH 201A Lecture 12''. UC Santa Barbara, Fall 2020.</ref> and <math>g(x) = x</math>. The function <math>f(x)</math> is a simple function and can be expressed in the following manner: <math display="block">f(x) = 1 \cdot 1_\mathbb{R} + 1 \cdot 1_\mathbb{R} = 2 \cdot 1_{(-\infty, 0]} + 2 \cdot 1_{[0, \infty)} = 2 \cdot 1_\mathbb{R}.</math> The last of these representations is the standard representation of <math>f(x)</math>. The function <math>g(x)</math> is not a simple function as <math>\{g(x) : x \in \mathbb{R}\} = \mathbb{R}</math>.


==Integration of Simple Functions==
==Integration of Simple Functions==

Latest revision as of 04:42, 19 December 2020

The simplest functions you will ever integrate, hence the name.

Definition

Let be a measure space. A measurable function is a simple function[1] if is a finite subset of . The standard representation[1] for a simple function is given by

,

where is the indicator function on the disjoint sets that partition , where .

Examples

Consider the functions determined by [2] and . The function is a simple function and can be expressed in the following manner:

The last of these representations is the standard representation of . The function is not a simple function as .

Integration of Simple Functions

These functions earn their name from the simplicity in which their integrals are defined[3]. Let be the space of all measurable functions from to Then

where by convention, we let . Note that is equivalent to and that some arguments may be omitted when there is no confusion.

Furthermore, for any , we define

Properties of Simple Functions

Given simple functions , the following are true[3]:

  • if ;
  • ;
  • if , then ;
  • the function is a measure on .

Proof[4]

Let and be simple functions with their corresponding standard representations.

We show the first claim. Suppose . Then , implying . Similarly, . Thus, the first statement holds for this case.

Suppose . Then

.

Next, we show the second statement. Notice that we can rewrite and as unions of disjoint sets as follows

and

Then

which by countable additivity,

It is worth noting that this may not be the standard representation for the integral of .

As for the third statement, if , then whenever , it must be that , implying that

Finally, we show the last statement. Define . Now we show satisfies all the measure properties. Notice that is a nonnegative function on . Then compute

Consider a disjoint sequence of sets and let be its union. Then

which by countable additivity is equal to

References

  1. 1.0 1.1 Craig, Katy. MATH 201A Lecture 11. UC Santa Barbara, Fall 2020.
  2. Craig, Katy. MATH 201A Lecture 12. UC Santa Barbara, Fall 2020.
  3. 3.0 3.1 Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.
  4. Craig, Katy. MATH 201A Lectures 12-13. UC Santa Barbara, Fall 2020.