|
|
(3 intermediate revisions by the same user not shown) |
Line 20: |
Line 20: |
| <strong> Bounded Convergence Theorem </strong>: Let <math> f_n </math> be a seqeunce of measurable functions bounded by <math> M </math>, supported on a set <math> E </math> and <math> f_n \to f </math> a.e. Then | | <strong> Bounded Convergence Theorem </strong>: Let <math> f_n </math> be a seqeunce of measurable functions bounded by <math> M </math>, supported on a set <math> E </math> and <math> f_n \to f </math> a.e. Then |
|
| |
|
| <math> \lim_{n \to +\infty}\int f_n=\int\lim_{n \to +\infty} f_n=\int f </math> | | <math> \lim_{n \to +\infty}\int f_n=\int\lim_{n \to +\infty} f_n=\int f </math> <ref name="SS2"> Stein & Shakarchi, ''Real Analysis: Measure Theory, Integration, and Hilbert Spaces'', Chapter 2 § 1 </ref> |
|
| |
|
| ==Proof== | | ==Proof== |
Line 26: |
Line 26: |
|
| |
|
| <math>\int |f_n-f|=\int_E |f_n-f|=\int_{A_\epsilon} |f_n-f|+\int_{E\setminus A_\epsilon}\leq \epsilon \mu(E)+2M \mu(E\setminus A_\epsilon)=\epsilon(\mu(E)+2M) </math> | | <math>\int |f_n-f|=\int_E |f_n-f|=\int_{A_\epsilon} |f_n-f|+\int_{E\setminus A_\epsilon}\leq \epsilon \mu(E)+2M \mu(E\setminus A_\epsilon)=\epsilon(\mu(E)+2M) </math> |
| | |
| | Since <math> \epsilon </math> was arbitrary and <math> \mu(E)+2M </math> is finite by assumption we are done. |
|
| |
|
| ==References== | | ==References== |
Latest revision as of 21:02, 7 December 2020
Statement
Suppose is a locally finite Borel measure and is a sequence of measurable functions defined on a measurable set with and a.e. on E.
Then:
Given we may find a closed subset such that and uniformly on [1]
Proof
WLOG assume for all since the set of points at which is a null set. Fix and for we define
. Since are measurable so is their difference. Then since the absolute value of a measurable function is measurable each is measurable.
Now for fixed we have that and . Therefore using continuity from below we may find a such that .
Now choose so that and define . By countable subadditivity we have that .
Fix any . We choose such that . Since if then . And by definition if then whenever . Hence uniformly on .
Finally, since is measurable, using HW5 problem 6 there exists a closed set such that . Therefore and on
Corollary
Bounded Convergence Theorem : Let be a seqeunce of measurable functions bounded by , supported on a set and a.e. Then
[2]
Proof
By assumptions on , is measurable, bounded, supported on for a.e. x. Fix , then by Egerov we may find a measurable subset of such that and uniformly on . Therefore, for sufficiently large we have that for all . Putting this together yields
Since was arbitrary and is finite by assumption we are done.
References
- ↑ Stein & Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Chapter 1 §4.3
- ↑ Stein & Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Chapter 2 § 1