Sigma-algebra: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
 
Line 15: Line 15:


==Product <math>\sigma</math>-algebras==
==Product <math>\sigma</math>-algebras==
<!--If <math>A</math> is a countable set, then <math>\bigotimes\limits_{\alpha \in A} M_{\alpha}</math> is the <math>\sigma</math>-algebra generated by <math>\left\{\prod\limits_{\alpha \in A} E_{\alpha} : E_{\alpha} \in M_{\alpha}\right\}</math>.
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref> This is called the product <math>\sigma</math>-algebra.-->


If <math>A</math> is a countable set, then <math>\bigotimes\limits_{\alpha \in A} M_{\alpha}</math> is the <math>\sigma</math>-algebra generated by <math>\left\{\prod\limits_{\alpha \in A} E_{\alpha} : E_{\alpha} \in M_{\alpha}\right\}</math>.  
Let <math>\{X_\alpha\}_{\alpha \in A}</math> be an indexed collection of nonempty sets, <math>X = \prod_{\alpha \in A} X_\alpha</math>, and <math>\pi_\alpha: X \rightarrow X_\alpha</math> the coordinate maps. If <math>\mathcal{M}_\alpha</math> is a <math>\sigma</math>-algebra on <math>X_\alpha</math> for each <math>\alpha</math>, the '''product <math>\sigma</math>-algebra''' on ''X'' is generated be <math>\{\pi_\alpha^{-1}(E_\alpha): E_\alpha \in \mathcal{M}_\alpha, \alpha \in A\}</math>.
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref> This is called the product <math>\sigma</math>-algebra.
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref>
 
'''Proposition.''' If ''A'' is countable, then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is the <math>\sigma</math>-algebra generated by <math>\{\prod_{\alpha \in A} E_\alpha: E_\alpha \in \mathcal{M}_\alpha\}</math>.
 
'''Proposition.''' Suppose that <math>\mathcal{M}_\alpha</math> is generated by <math>\mathcal{E}_\alpha, \alpha \in A</math>. Then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is generated by <math>\mathcal{F}_1 = \{\pi_\alpha^{-1}(E_\alpha): E_\alpha \in \mathcal{E}_\alpha, \alpha \in A\}</math>. If ''A'' is countable and <math>X_\alpha \in \mathcal{E}_\alpha</math> for all <math>\alpha</math>, then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is generated by <math>\mathcal{F}_2 = \{\prod_{\alpha \in A}E_\alpha: E_\alpha \in \mathcal{E}_\alpha\}</math>.


==Other Examples of <math>\sigma</math>-algebras==
==Other Examples of <math>\sigma</math>-algebras==

Latest revision as of 21:40, 18 December 2020

A -algebra is an algebra that is closed under countable unions. Thus a -algebra is a nonempty collection A of subsets of a nonempty set X closed under countable unions and complements. [1]

-algebra Generation

The intersection of any number of -algebras on a set is a -algebra. The -algebra generated by a collection of subsets of is the smallest -algebra containing , which is unique by this property.

The -algebra generated by is denoted as .

If and are subsets of and then . This result is commonly used to simplify proofs of containment in -algebras.

An important common example is the Borel -algebra on , the -algebra generated by the open sets of .


Product -algebras

Let be an indexed collection of nonempty sets, , and the coordinate maps. If is a -algebra on for each , the product -algebra on X is generated be . [1]

Proposition. If A is countable, then is the -algebra generated by .

Proposition. Suppose that is generated by . Then is generated by . If A is countable and for all , then is generated by .

Other Examples of -algebras

  • Given a set , then and are -algebras, called the indiscrete and discrete -algebras respectively.
  • If is uncountable, the set of countable and co-countable subsets of is a -algebra.
  • By Carathéodory's Theorem, if is an outer measure on , the collection of -measurable sets is a -algebra. [2]
  • Let be a map. If is a -algebra on , then is a -algebra in .

Non-examples

  • The algebra of finite and cofinite subsets of a nonempty set may no longer be a -algebra. Let , then every set of the form for is finite, but their countable union is neither finite nor cofinite.

References

  1. 1.0 1.1 Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, Second Edition, §1.2
  2. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, Second Edition, §1.4