New article ideas: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Removed Sliced Wasserstein distance)
Line 14: Line 14:
* Semidiscrete Optimal Transport (for <math> c(x,y) = |x-y|^2 </math>); Santambrogio (242-248); Peyré Cuturi (85-89)
* Semidiscrete Optimal Transport (for <math> c(x,y) = |x-y|^2 </math>); Santambrogio (242-248); Peyré Cuturi (85-89)
* Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
* Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
* Sliced Wasserstein Distance; Santambrogio (214-215); Peyré, Cuturi (166-169)
* Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)
* Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)



Revision as of 11:32, 10 June 2020

Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.

Want to write about something that's not listed here? Email me!

The Optimal Transport Problem

The 2-Wasserstein Metric

  • Displacement convexity; Santambrogio (249-251,271-276); Villani (150-154)
  • Asymptotic equivalence of and ; Santambrogio (209-211); Villani (233-235)

Numerical Methods for Optimal Transport

  • Semidiscrete Optimal Transport (for ); Santambrogio (242-248); Peyré Cuturi (85-89)
  • Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
  • Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)

Applications of Optimal Transport

Mathematical Foundations: Optimization

  • Fenchel-Rockafellar and Linear Programming; Brezis (15-17); Rockafellar, Variational Analysis (505-507)