New article ideas: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 21: Line 21:
==Applications of Optimal Transport==
==Applications of Optimal Transport==
* Machine Learning [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024256/ Kolouri, et al, ''Optimal Mass Transport: Signal processing and machine-learning applications'']
* Machine Learning [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024256/ Kolouri, et al, ''Optimal Mass Transport: Signal processing and machine-learning applications'']
==Mathematical Foundations: Functional Analysis==
*


==Mathematical Foundations: Optimization==
==Mathematical Foundations: Optimization==

Revision as of 21:33, 25 May 2020

Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.

Want to write about something that's not listed here? Email me!

The Optimal Transport Problem

The 2-Wasserstein Metric

  • Geodesics and generalized geodesics; Santambrogio (202-207), Ambrosio, Gilgi, Savaré (158-160)
  • Displacement convexity; Santambrogio (249-251,271-276); Villani (150-154)
  • Asymptotic equivalence of and ; Santambrogio (209-211); Villani (233-235)
  • Formal Riemannian Structure of the Wasserstein metric; Villani (245-247, 250-251); Ambrosio, Gigli, Savaré (189-191)

Numerical Methods for Optimal Transport

  • Semidiscrete Optimal Transport (for ); Santambrogio (242-248); Peyré Cuturi (85-89)
  • Computing OT via Benamou-Brenier; Santambrogio (220-225); Peyré, Cuturi (102-108)
  • Sliced Wasserstein Distance; Santambrogio (214-215); Peyré, Cuturi (166-169)
  • Wasserstein Barycenters; Santambrogio (215-218); Peyré, Cuturi (138-144)

Applications of Optimal Transport

Mathematical Foundations: Optimization

  • Fenchel-Rockafellar and Linear Programming; Brezis (15-17); Rockafellar, Variational Analysis (505-507)

Mathematical Foundations: Differential Equations

  • Gradient flows in metric spaces; Santambrogio (285-290) more refs