New article ideas: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 17: Line 17:
* Computing OT via Benamou-Brenier; Santambrogio (220-225)<span style="color:red">more refs</span>
* Computing OT via Benamou-Brenier; Santambrogio (220-225)<span style="color:red">more refs</span>
* Sliced Wasserstein Distance; Santambrogio (214-215)
* Sliced Wasserstein Distance; Santambrogio (214-215)
* Wasserstein Barycenters; Santambrogio (215-217)
* Wasserstein Barycenters; Santambrogio (215-218)


==Applications of Optimal Transport==
==Applications of Optimal Transport==

Revision as of 21:04, 25 May 2020

Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.

Want to write about something that's not listed here? Email me!

The Optimal Transport Problem


The 2-Wasserstein Metric

  • Geodesics and generalized geodesics; Santambrogio (202-207)more refs
  • (Displacement) convex functionals in the 2-Wasserstein metric; Santambrogio (249-251,271-276)
  • Asymptotic equivalence of and ; Santambrogio (209-211) more refs

Numerical Methods for Optimal Transport

  • Semidiscrete Optimal Transport (for ); Santambrogio (242-248); Peyré Cuturi (85-89)
  • Computing OT via Benamou-Brenier; Santambrogio (220-225)more refs
  • Sliced Wasserstein Distance; Santambrogio (214-215)
  • Wasserstein Barycenters; Santambrogio (215-218)

Applications of Optimal Transport

Mathematical Foundations: Functional Analysis

Mathematical Foundations: Optimization

  • Fenchel-Rockafellar and Linear Programming; Brezis (15-17); Rockafellar, Variational Analysis (505-507)

Mathematical Foundations: Differential Equations

  • Gradient flows in metric spaces; Santambrogio (285-290) more refs