New article ideas: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


==The Optimal Transport Problem==
==The Optimal Transport Problem==
* Monge Problem (for general costs); Villani (3-4, 6-9), Santambrogio (xiv-xvii)
* Monge Problem (for general costs); Villani (3-4, 6-9), Santambrogio (xiv-xvii,1-9)
* Kantorovich Problem (for general costs); Villani (1-3, 6-9), Santambrogio (xv-xvii)
* Kantorovich Problem (for general costs); Villani (1-3, 6-9), Santambrogio (xv-xvii,1-9)
* Discrete Optimal Transport (for general costs); Villani (5)
* Discrete Optimal Transport (for general costs); Villani (5)
* Kantorovich Dual Problem (for general costs); Villani (17-21)
* Kantorovich Dual Problem (for general costs); Villani (17-21), Santambrogio (9-16)
* Kantorovich Dual Problem (for <math> c(x,y) = d(x,y) </math> where <math> d </math> is a metric); Villani (34)
* Kantorovich Dual Problem (for <math> c(x,y) = d(x,y) </math> where <math> d </math> is a metric); Villani (34)
* Optimal Transport and the Monge Ampère equation; Santambrogio (xvi)
* Kantorovich Dual Problem (for <math> c(x,y) = d(x,y)^2 </math> where <math> d </math> is a metric); Santambrogio (16-18)
* Optimal Transport and the Monge Ampère equation; Santambrogio (xvi, 54-57)

Revision as of 21:02, 7 April 2020

Below, you can find a list of new article ideas and suggested references. If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.

Want to write about something that's not listed here? Email me!

The Optimal Transport Problem

  • Monge Problem (for general costs); Villani (3-4, 6-9), Santambrogio (xiv-xvii,1-9)
  • Kantorovich Problem (for general costs); Villani (1-3, 6-9), Santambrogio (xv-xvii,1-9)
  • Discrete Optimal Transport (for general costs); Villani (5)
  • Kantorovich Dual Problem (for general costs); Villani (17-21), Santambrogio (9-16)
  • Kantorovich Dual Problem (for where is a metric); Villani (34)
  • Kantorovich Dual Problem (for where is a metric); Santambrogio (16-18)
  • Optimal Transport and the Monge Ampère equation; Santambrogio (xvi, 54-57)