Kantorovich Dual Problem (for general costs): Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:


(Kantorovich Duality) Let X and Y be Polish spaces, let <math>\mu \in \mathcal{P}(X)</math> and <math>\nu \in \mathcal{P}(Y)</math>, and let a cost function <math> c:X \times Y \rightarrow[0,+\infty] </math> be lower semi-continuous.
(Kantorovich Duality) Let X and Y be Polish spaces, let <math>\mu \in \mathcal{P}(X)</math> and <math>\nu \in \mathcal{P}(Y)</math>, and let a cost function <math> c:X \times Y \rightarrow[0,+\infty] </math> be lower semi-continuous.
Whenever <math> \pi \in \mathcal{P}(X \times Y) </math> and <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math>, define  
Whenever <math> \pi \in \mathcal{P}(X \times Y) </math> and <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math>, define <br>
<br>
 
<math> I[\pi]= \int_{X\times Y} c(x,y) d\pi(x,y), \quad J(\varphi,\psi)=\int_{X}\varphi(x)d\mu(x)+\int_{Y}\psi(y) d\nu(y) </math>.
<math> I[\pi]= \int_{X\times Y} c(x,y) d\pi(x,y), \quad J(\varphi,\psi)=\int_{X}\varphi(x)d\mu(x)+\int_{Y}\psi(y) d\nu(y) </math>.


Line 14: Line 14:
<math> \pi[A\times Y]=\mu(A) </math>, <math> \pi[X\times B]=\nu(B) </math>, <br>  
<math> \pi[A\times Y]=\mu(A) </math>, <math> \pi[X\times B]=\nu(B) </math>, <br>  


and define <math> \Phi_{c} </math> to be the set of all measurable functions <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math> satisfying <math> \varphi(x)+\psi(y) \leq c(x,y) </math> for <math> d\mu </math> almost everywhere in X and <math> d\nu </math> almost everywhere in Y. Then <math> inf_{\Pi(\mu,\nu)} I[\pi] = sup_{\Phi_{c}} J(\varphi,\psi) </math>.  
and define <math> \Phi_{c} </math> to be the set of all measurable functions <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math> satisfying <math> \varphi(x)+\psi(y) \leq c(x,y) </math> for <math> d\mu </math> almost everywhere in X and <math> d\nu </math> almost everywhere in Y. Then <math> inf_{\Pi(\mu,\nu)} I[\pi] = sup_{\Phi_{c}} J(\varphi,\psi) </math>. <br>


Moreover, the infimum <math> inf_{\Pi(\mu,\nu)} I[\pi] </math> is attained. It is possible to restrict <math> \varphi </math> and <math> \psi </math> to be continuous and bounded.
Moreover, the infimum <math> inf_{\Pi(\mu,\nu)} I[\pi] </math> is attained. It is possible to restrict <math> \varphi </math> and <math> \psi </math> to be continuous and bounded.

Revision as of 23:15, 16 May 2020

Introduction

The main advantage of Kantorovich Problem, in comparison to Monge problem, is in the convex constraint property. It is possible to formulate the dual problem.

Statement of Theorem

(Kantorovich Duality) Let X and Y be Polish spaces, let and , and let a cost function be lower semi-continuous. Whenever and , define

.

Define to be the set of Borel probability measures on such that for all measurable sets and ,

, ,

and define to be the set of all measurable functions satisfying for almost everywhere in X and almost everywhere in Y. Then .

Moreover, the infimum is attained. It is possible to restrict and to be continuous and bounded.

Proof of Theorem

References


[1]

[2]

</ references>

  1. C. Villani, Topics in Optimal Transportation, Chapter 1. (pages 17-21)
  2. https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1.] (pages 9-16)