Fenchel-Rockafellar and Linear Programming: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Created page, proof sketch section incomplete)
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The Fenchel-Rockafellar Theorem is a minimax principle especially suited to converting between [[Fenchel-Moreau and Primal/Dual Optimization Problems#Applications to Primal/Dual Optimization Problems|primal and dual]] [//en.wikipedia.org/wiki/Linear_programming linear programs].
The Fenchel-Rockafellar Theorem is a well-known result from convex analysis that establishes a minimax principle between convex functions and their convex conjugates under some regularity conditions. One fundamental application of this theorem is the characterization of the dual problem of a finite dimensional linear program.


= The Fenchel-Rockafellar Theorem =


Suppose <math>\phi : X \to \mathbb{R} \cup \left\{+\infty\right\}</math> and <math>\psi : X \to \mathbb{R} \cup \left\{+\infty\right\}</math> are convex, lower semicontinuous, proper functions which are both finite at some <math>x_0 \in X</math>, and <math>\phi</math> is continuous there.
== The Fenchel-Rockafellar Theorem ==
Then <math display="block">\inf\left\{\phi(x) + \psi(x) : x \in X\right\} = \max\left\{-\phi^*(-u) - \psi^*(u) : u \in X^*\right\},</math> where the existence of the minimizer on the right hand side is part of the theorem.


== Proof Sketch ==
Let <math>\phi : X \to \mathbb{R} \cup \left\{+\infty\right\}</math> and <math>\psi : X \to \mathbb{R} \cup \left\{+\infty\right\}</math> be convex, lower semicontinuous and proper functions. Suppose that there exists <math>x_0 \in X</math> such that <math> \phi(x_0),\varphi(x_0) < \infty</math>, where <math> \phi </math> is continuous at <math> x_0 </math>. Then, it holds that


Details may be found in Brezis' text<ref name="Brezis" />, but a sketch of the proof follows.
<math display="block"> \underset{x \in X}{\inf}\left\{ \phi(x) + \psi(x) \right\} = \underset{u \in X^*} {\max}\left\{-\phi^*(-u) - \psi^*(u) \right\}.</math>


By Young's Inequality, for any <math>x \in X</math> and <math>u \in X^*</math>, we have <math>\phi(x) + \phi^*(-u) + \psi(x) + \psi^*(u) \leq \langle x, -u \rangle + \langle x, u \rangle = 0</math>, so the infimum on the left is less than or equal to the supremum on the right.
=== Proof ===
If the supremum is <math>-\infty</math>, equality must be obtained and every <math>u \in X^*</math> must realize it; otherwise assume <math>-\phi(-u) - \psi(u) > -\infty</math> everywhere.
(INCOMPLETE)


We provide a sketch of the proof, the reader is referred to Brezis<ref name="Brezis" /> for further reading. Note that, by Young's Inequality, for any <math >x \in X</math> and <math>u \in X^*</math> we have
<math display="block" >\phi(x) + \phi^*(-u) + \psi(x) + \psi^*(u) \geq \langle x, -u \rangle + \langle x, u \rangle = 0.</math>
Hence, the infimum of the left hand side is greater than or equal to the supremum of the right hand side. If the infimum is <math>-\infty</math>, equality must be obtained, and for every <math>u \in X^*</math> the supremum is realized; otherwise assume <math>\phi(x) + \psi(x) > -\infty</math> for all <math> x \in X </math>, and let <math>m</math> be the value of the infimum.


Let <math> A := \left\{(x, t) : \phi(x) \leq t\right\},</math> and observe that since <math>\phi</math> is continuous at <math>x_0</math>, the interior of <math>C</math> is nonempty. Likewise, let <math> B := \left\{(x, t) : t \leq m - \psi(x)\right\}</math>. Both sets are convex, and by construction we have <math>B \cap \text{int}A = \emptyset</math>. So a [https://en.wikipedia.org/wiki/Hahn%E2%80%93Banach_theorem#Separation_of_sets geometric Hahn-Banach Theorem] implies that there is some nonzero <math>(f, k) \in X^* \times \mathbb{R}</math> and <math>\alpha \in \mathbb{R}</math> such that <math display="block">\begin{cases} \langle x, f \rangle + kt \geq \alpha, & (x, t) \in A, \\ \langle x, f \rangle + kt \leq \alpha, & (x, t) \in B.\end{cases}</math>
Since <math>\phi</math> is finite at <math>x_0</math>, letting <math>t \to +\infty</math> shows that <math>k</math> is nonnegative, and if <math>k = 0</math>, continuity and joint finiteness imply <math>\lVert f \rVert = 0</math>, a contradiction, so <math>k > 0</math>. Thus, we can use the inequalities above with the definitions of <math>\phi^*</math> and <math>\psi^*</math> to conclude that
<math display="block"> \phi^*\left(-\frac f k\right) \leq -\frac \alpha k, \quad \text{and} \quad \psi^*\left(\frac f k\right) \leq \frac \alpha k - m.</math>
Which implies that <math display="block">-\phi^*\left(-\frac f k\right) - \psi^*\left(\frac f k\right) \geq m.</math>
Finally, since the supremum includes this term, it must also be greater than or equal to the infimum, which yields their equality.


= Application to Linear Programs =


Consider the linear program<ref name="Rockafellar" /> <math display="block">\inf\left\{\langle c, x \rangle + \theta_Y(b-Ax) : x \in X\right\},</math> where <math>X = \mathbb{R}^r_+ \times \mathbb{R}^{n-r}</math>, <math>Y = \mathbb{R}^s_+ \times \mathbb{R}^{m-s}</math>, and <math>\theta_Z(u) := \sup\left\{\langle z, u \rangle : z \in Z\right\} = \chi_Z^*(u)</math>.
== Application to Linear Programs ==
Then if we put <math display="block">\phi(x) + \psi(x) := \left(\langle c, x \rangle + \chi_X(x)\right) + \theta_Y(b - Ax),</math> (noting that <math>\langle c, x \rangle + \chi_X(x)</math> and <math>\theta_Y(b-Ax)</math> are both convex lower semicontinuous proper functions), we are interested in computing <math>\phi^*(u) = \sup\left\{\langle x, u - c \rangle : x \in X \right\} = \theta_X(u-c)</math> and <math>\psi^*(u) = \sup\left\{\langle x, u \rangle - \sup\left\{ \langle y, b-Ax \rangle : y \in Y \right\} : z \in \mathbb{R}^n \right\}</math>.
By writing the latter as <math>\psi^*(u) = \sup\left\{\inf\left\{\langle x, u + A^*y \rangle - \langle y, b \rangle : y \in Y\right \} : z \in \mathbb{R}^n \right\}</math>, we can see that we have a finite value of <math>\psi^*(u)</math> if and only if <math>u = -A^*y_0</math> for some <math>y_0 \in Y</math>, and the value is then the infimum of <math>-\langle y, b \rangle</math> where <math>A^*y = A^*y_0</math>.
Putting this together, the Fenchel-Rockafellar Theorem gives that <math display="block">\inf\left\{\langle c, x \rangle + \theta_Y(b-Ax) : x \in X\right\} = \max\left\{\langle y, b \rangle - \theta_X(A^*y - c) : y \in Y\right\}, </math> provided we can find a point of continuity and mutual finiteness for <math>\phi</math> and <math>\psi</math>.


To do this, we use our knowledge of <math>X</math> and <math>Y</math> to be more precise about the <math>\theta</math> functions.
Let <math> A_1 \in \mathbb{R}^{p \times m} </math>,<math> A_2 \in \mathbb{R}^{q\times n} </math>,<math> b_1 \in \mathbb{R}^{p} </math>, <math> b_2 \in \mathbb{R}^{q} </math>,<math> c_1 \in \mathbb{R}^{m} </math> and <math> c_2 \in \mathbb{R}^{m} </math> and consider the following finite dimensional linear program<ref name="Rockafellar" />
In particular, if we write <math>(\pi_1^Y, \pi_2^Y) : Y \to \mathbb{R}^s \times \mathbb{R}^{m-s}</math> and <math>(\pi_1^X, \pi_2^X) : X \to \mathbb{R}^r \times \mathbb{R}^{n-r}</math> for the projections, and put <math>(b_1, b_2) = (\pi_1^Y, \pi_2^Y)b</math>, <math>(A_1, A_2) = (\pi_1^Y, \pi_2^Y) \circ A</math>, <math>(c_1, c_2) = (\pi_1^X, \pi_2^X)c</math>, and <math>(A_1^*, A_2^*) = (\pi_1^X, \pi_2^X) \circ A^*</math> (which do satisfy <math>A_i^* = (A_i)^*</math>, justifying the notation) we get (writing inequalities termwise) <math display="block">\theta_Y(b-Ax) = \begin{cases} 0, & b_1 \leq A_1x \land b_2 = A_2x, \\ +\infty, & \text{else}, \end{cases} \qquad \theta_X(A^*y - c) = \begin{cases} 0, & c_1 \geq A_1^*y \land c_2 = A_2^*y \\ +\infty, & \text{else}.\end{cases}</math>
So, if some point in the interior of <math>X</math> is mapped strictly greater than <math>b_1</math> by <math>A_1</math> and onto <math>b_2</math> by <math>A_2</math>, we may write the duality result in the more customary way, <math display="block"> \inf_{x \in X, A_1x \geq b_1, A_2x = b_2} \langle c, x \rangle = \max_{y \in Y, A_1^*y \leq c_1, A_2^*y = c_2} \langle y, b \rangle.</math>




<math display="block">
\mathcal{P} = \quad \begin{aligned}
& {\text{        }\inf}
& & \langle c_1, x \rangle + \langle c_2, y \rangle \\
& \text{subject to} & &  A_1 x \geq b_1 \\
&  & &  A_2 y = b_2 \\
&  & &  x \geq 0 \\
\end{aligned}
</math>
where <math> x \in \mathbb{R}^{m} </math> and <math> y \in \mathbb{R}^{n} </math>. Moreover, let us suppose that there exist at least one feasible solution <math> \tilde{x} \in \mathbb{R}^{m},\tilde{y} \in \mathbb{R}^{n} </math> such that <math> A_1 \tilde{x} > b_1 </math> <math> A_2 \tilde{y} = b_2 </math> and <math> \tilde{x} > 0 </math>. Then, dual problem of <math> \mathcal{P} </math> is given by
<math display="block">
\mathcal{D}= \quad  \begin{aligned}
& {\text{        }\max}
& & \langle  b_1 , \alpha  \rangle + \langle b_2 , \beta \rangle \\
& \text{subject to} & &  A_1^T \alpha \leq c_1 \\
&  & &  A_2^T \beta = c_2 \\
&  & &  \alpha \geq 0 \\
\end{aligned}
</math>
where <math> \alpha \in \mathbb{R}^{p} </math> and <math> \beta \in \mathbb{R}^{q} </math>. Furthermore, <math> \mathcal{D} </math> attains its optimal value and we have <math> \mathcal{P}  =  \mathcal{D} </math>.
===Proof===
Note that, the linear program may be equivalently written as
<math display="block">
  \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\inf} \left\{ \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) + \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) +  \Chi_{\{0\}} (b_2 - A_2 y) \right\}
</math>
where <math> \Chi_A </math> denotes the characteristic function of <math> A \subseteq \mathbb{R}^n </math>. Further, let us define <math> \phi(x,y) = \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) </math>, and <math> \varphi(x,y) = \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) +  \Chi_{\{0\}} (b_2 - A_2 y) </math>. Note that, both <math> \phi </math> and <math> \varphi </math> are convex, lower semicontinuous and proper functions, where we have <math> \phi ( \tilde{x},\tilde{y}),\varphi(\tilde{x},\tilde{y}) < \infty </math>. Moreover, since we have <math> \tilde{x} > 0 </math>, we observe that <math> \phi </math> is continuous at <math> (\tilde{x},\tilde{y}) </math>. Therefore, by the Fenchel-Rockafellar Theorem we obtain
<math display="block">
    \underset{w \in \mathbb{R}^{m},t \in \mathbb{R}^{n}}{\max} \left\{ -\phi^\star(-w,-t) - \varphi^\star(w,t)  \right\} = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\inf} \left\{ \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) + \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) +  \Chi_{\{0\}} (b_2 - A_2 y) \right\}.
</math>
In terms of convex conjugate of <math> \phi </math> we have
<math display="block">
    \begin{align} \phi^\star(-w,-t) & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ -\langle x, w+c_1 \rangle - \langle y, t+c_2 \rangle - \Chi_{ \mathbb{R}_+ }(x)  \right\} \\ & = \underset{ x \in \mathbb{R}^{m}_{-},y \in \mathbb{R}^{n} }{\sup} \left\{ -\langle x, w+c_1 \rangle - \langle y, t+c_2 \rangle  \right\} \\ & = \Chi_{ \mathbb{R}_+ }(w+c_1) + \Chi_{\{0\}}(t+c_2).
\end{align}
</math>
Furthermore, for the convex conjugate of <math> \varphi </math> we observe
<math display="block">
    \begin{align} \varphi^\star(w,t) & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \langle x, w \rangle + \langle y, t \rangle - \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) -  \Chi_{\{0\}} (b_2 - A_2 y)  \right\}
\\ & =  \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \langle x, w \rangle + \langle y, t \rangle - \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\sup} \left\{ \langle  b_1 - A_1 x ,\alpha \rangle + \langle  b_2 - A_2 y , \beta \rangle \right\}  \right\}
\\ & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\inf} \left\{ \langle x, w \rangle + \langle y, t \rangle + \langle  A_1 x - b_1 , \alpha  \rangle + \langle A_2 y - b2 , \beta \rangle \right\}  \right\}
\\ & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\inf} \left\{ \langle x, w+ A_1^T \alpha \rangle + \langle y, t+A_2^T\beta \rangle - \langle  b_1 , \alpha  \rangle - \langle b_2 , \beta \rangle \right\}  \right\}
\end{align}
</math>
Notice that, <math> \varphi^\star </math> is finite if and only if we have <math>  w = A_1^T \alpha </math> and <math> t = A_2^T\beta </math> for some <math> \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} </math>. Therefore, as <math> \phi^\star = \Chi_{ \mathbb{R}_+ }(w+c_1) + \Chi_{\{0\}}(t+c_2)</math>, by combining these two results with the Fenchel-Rockafellar Theorem we obtain the dual linear program as follows.
<math display="block">
  \underset{\alpha \in \mathbb{R}^{p}_+,\beta \in \mathbb{R}^{q}}{\max} \left\{ \langle  b_1 , \alpha  \rangle + \langle b_2 , \beta \rangle - \Chi_{\mathbb{R}_+} (c_1-A_1^T \alpha) - \Chi_{\{0\}} (A_2^T \beta -c_2) \right\}
</math>


= References =
= References =

Latest revision as of 12:22, 5 March 2022

The Fenchel-Rockafellar Theorem is a well-known result from convex analysis that establishes a minimax principle between convex functions and their convex conjugates under some regularity conditions. One fundamental application of this theorem is the characterization of the dual problem of a finite dimensional linear program.


The Fenchel-Rockafellar Theorem

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi : X \to \mathbb{R} \cup \left\{+\infty\right\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi : X \to \mathbb{R} \cup \left\{+\infty\right\}} be convex, lower semicontinuous and proper functions. Suppose that there exists Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 \in X} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x_0),\varphi(x_0) < \infty} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } is continuous at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 } . Then, it holds that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{x \in X}{\inf}\left\{ \phi(x) + \psi(x) \right\} = \underset{u \in X^*} {\max}\left\{-\phi^*(-u) - \psi^*(u) \right\}.}

Proof

We provide a sketch of the proof, the reader is referred to Brezis[1] for further reading. Note that, by Young's Inequality, for any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u \in X^*} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x) + \phi^*(-u) + \psi(x) + \psi^*(u) \geq \langle x, -u \rangle + \langle x, u \rangle = 0.} Hence, the infimum of the left hand side is greater than or equal to the supremum of the right hand side. If the infimum is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} , equality must be obtained, and for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u \in X^*} the supremum is realized; otherwise assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x) + \psi(x) > -\infty} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X } , and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} be the value of the infimum.

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A := \left\{(x, t) : \phi(x) \leq t\right\},} and observe that since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} is continuous at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} , the interior of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} is nonempty. Likewise, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B := \left\{(x, t) : t \leq m - \psi(x)\right\}} . Both sets are convex, and by construction we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \cap \text{int}A = \emptyset} . So a geometric Hahn-Banach Theorem implies that there is some nonzero Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f, k) \in X^* \times \mathbb{R}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \in \mathbb{R}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \langle x, f \rangle + kt \geq \alpha, & (x, t) \in A, \\ \langle x, f \rangle + kt \leq \alpha, & (x, t) \in B.\end{cases}} Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} is finite at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} , letting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \to +\infty} shows that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} is nonnegative, and if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = 0} , continuity and joint finiteness imply Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lVert f \rVert = 0} , a contradiction, so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k > 0} . Thus, we can use the inequalities above with the definitions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi^*} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi^*} to conclude that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi^*\left(-\frac f k\right) \leq -\frac \alpha k, \quad \text{and} \quad \psi^*\left(\frac f k\right) \leq \frac \alpha k - m.} Which implies that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\phi^*\left(-\frac f k\right) - \psi^*\left(\frac f k\right) \geq m.} Finally, since the supremum includes this term, it must also be greater than or equal to the infimum, which yields their equality.


Application to Linear Programs

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1 \in \mathbb{R}^{p \times m} } ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_2 \in \mathbb{R}^{q\times n} } ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \in \mathbb{R}^{p} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2 \in \mathbb{R}^{q} } ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1 \in \mathbb{R}^{m} } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 \in \mathbb{R}^{m} } and consider the following finite dimensional linear program[2]


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{P} = \quad \begin{aligned} & {\text{ }\inf} & & \langle c_1, x \rangle + \langle c_2, y \rangle \\ & \text{subject to} & & A_1 x \geq b_1 \\ & & & A_2 y = b_2 \\ & & & x \geq 0 \\ \end{aligned} }


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \mathbb{R}^{m} } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \in \mathbb{R}^{n} } . Moreover, let us suppose that there exist at least one feasible solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{x} \in \mathbb{R}^{m},\tilde{y} \in \mathbb{R}^{n} } such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1 \tilde{x} > b_1 } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_2 \tilde{y} = b_2 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{x} > 0 } . Then, dual problem of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{P} } is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{D}= \quad \begin{aligned} & {\text{ }\max} & & \langle b_1 , \alpha \rangle + \langle b_2 , \beta \rangle \\ & \text{subject to} & & A_1^T \alpha \leq c_1 \\ & & & A_2^T \beta = c_2 \\ & & & \alpha \geq 0 \\ \end{aligned} }

where and . Furthermore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{D} } attains its optimal value and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{P} = \mathcal{D} } .

Proof

Note that, the linear program may be equivalently written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\inf} \left\{ \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) + \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) + \Chi_{\{0\}} (b_2 - A_2 y) \right\} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Chi_A } denotes the characteristic function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq \mathbb{R}^n } . Further, let us define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x,y) = \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) } , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi(x,y) = \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) + \Chi_{\{0\}} (b_2 - A_2 y) } . Note that, both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi } are convex, lower semicontinuous and proper functions, where we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi ( \tilde{x},\tilde{y}),\varphi(\tilde{x},\tilde{y}) < \infty } . Moreover, since we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{x} > 0 } , we observe that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } is continuous at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\tilde{x},\tilde{y}) } . Therefore, by the Fenchel-Rockafellar Theorem we obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{w \in \mathbb{R}^{m},t \in \mathbb{R}^{n}}{\max} \left\{ -\phi^\star(-w,-t) - \varphi^\star(w,t) \right\} = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\inf} \left\{ \langle c_1, x \rangle + \langle c_2, y \rangle + \Chi_{ \mathbb{R}_+ }(x) + \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) + \Chi_{\{0\}} (b_2 - A_2 y) \right\}. }

In terms of convex conjugate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \phi^\star(-w,-t) & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ -\langle x, w+c_1 \rangle - \langle y, t+c_2 \rangle - \Chi_{ \mathbb{R}_+ }(x) \right\} \\ & = \underset{ x \in \mathbb{R}^{m}_{-},y \in \mathbb{R}^{n} }{\sup} \left\{ -\langle x, w+c_1 \rangle - \langle y, t+c_2 \rangle \right\} \\ & = \Chi_{ \mathbb{R}_+ }(w+c_1) + \Chi_{\{0\}}(t+c_2). \end{align} }

Furthermore, for the convex conjugate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi } we observe

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \varphi^\star(w,t) & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \langle x, w \rangle + \langle y, t \rangle - \Chi_{ \mathbb{R}_+ }(b_1 - A_1 x) - \Chi_{\{0\}} (b_2 - A_2 y) \right\} \\ & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \langle x, w \rangle + \langle y, t \rangle - \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\sup} \left\{ \langle b_1 - A_1 x ,\alpha \rangle + \langle b_2 - A_2 y , \beta \rangle \right\} \right\} \\ & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\inf} \left\{ \langle x, w \rangle + \langle y, t \rangle + \langle A_1 x - b_1 , \alpha \rangle + \langle A_2 y - b2 , \beta \rangle \right\} \right\} \\ & = \underset{ x \in \mathbb{R}^{m},y \in \mathbb{R}^{n} }{\sup} \left\{ \underset{ \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} }{\inf} \left\{ \langle x, w+ A_1^T \alpha \rangle + \langle y, t+A_2^T\beta \rangle - \langle b_1 , \alpha \rangle - \langle b_2 , \beta \rangle \right\} \right\} \end{align} }

Notice that, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi^\star } is finite if and only if we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w = A_1^T \alpha } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = A_2^T\beta } for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \in \mathbb{R}^{p}_+ , \beta \in \mathbb{R}^{q} } . Therefore, as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi^\star = \Chi_{ \mathbb{R}_+ }(w+c_1) + \Chi_{\{0\}}(t+c_2)} , by combining these two results with the Fenchel-Rockafellar Theorem we obtain the dual linear program as follows.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underset{\alpha \in \mathbb{R}^{p}_+,\beta \in \mathbb{R}^{q}}{\max} \left\{ \langle b_1 , \alpha \rangle + \langle b_2 , \beta \rangle - \Chi_{\mathbb{R}_+} (c_1-A_1^T \alpha) - \Chi_{\{0\}} (A_2^T \beta -c_2) \right\} }

References