Sigma-algebra: Difference between revisions
(An overview of <math>\sigma</math>-algebras and related theorems will be placed on this page.) |
No edit summary |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<math>\sigma</math>-algebra | A '''<math>\sigma</math>-algebra''' is an [[algebra]] that is closed under countable unions. Thus a <math>\sigma</math>-algebra is a nonempty collection ''A'' of subsets of a nonempty set ''X'' closed under countable unions and complements. | ||
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref> | |||
==<math>\sigma</math>-algebra Generation== | |||
The intersection of any number of <math>\sigma</math>-algebras on a set <math>X</math> is a <math>\sigma</math>-algebra. The <math>\sigma</math>-algebra generated by a collection of subsets of <math>X</math> is the smallest <math>\sigma</math>-algebra containing <math>X</math>, which is unique by this property. | |||
The <math>\sigma</math>-algebra generated by <math>E \subseteq 2^X</math> is denoted as <math>M(E)</math>. | |||
If <math>E</math> and <math>F</math> are subsets of <math>2^X</math> and <math>E \subseteq M(F)</math> then <math>M(E) \subseteq M(F)</math>. This result is commonly used to simplify proofs of containment in <math>\sigma</math>-algebras. | |||
An important common example is the Borel <math>\sigma</math>-algebra on <math>X</math>, the <math>\sigma</math>-algebra generated by the open sets of <math>X</math>. | |||
==Product <math>\sigma</math>-algebras== | |||
<!--If <math>A</math> is a countable set, then <math>\bigotimes\limits_{\alpha \in A} M_{\alpha}</math> is the <math>\sigma</math>-algebra generated by <math>\left\{\prod\limits_{\alpha \in A} E_{\alpha} : E_{\alpha} \in M_{\alpha}\right\}</math>. | |||
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref> This is called the product <math>\sigma</math>-algebra.--> | |||
Let <math>\{X_\alpha\}_{\alpha \in A}</math> be an indexed collection of nonempty sets, <math>X = \prod_{\alpha \in A} X_\alpha</math>, and <math>\pi_\alpha: X \rightarrow X_\alpha</math> the coordinate maps. If <math>\mathcal{M}_\alpha</math> is a <math>\sigma</math>-algebra on <math>X_\alpha</math> for each <math>\alpha</math>, the '''product <math>\sigma</math>-algebra''' on ''X'' is generated be <math>\{\pi_\alpha^{-1}(E_\alpha): E_\alpha \in \mathcal{M}_\alpha, \alpha \in A\}</math>. | |||
<ref name="Folland1">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.2 </ref> | |||
'''Proposition.''' If ''A'' is countable, then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is the <math>\sigma</math>-algebra generated by <math>\{\prod_{\alpha \in A} E_\alpha: E_\alpha \in \mathcal{M}_\alpha\}</math>. | |||
'''Proposition.''' Suppose that <math>\mathcal{M}_\alpha</math> is generated by <math>\mathcal{E}_\alpha, \alpha \in A</math>. Then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is generated by <math>\mathcal{F}_1 = \{\pi_\alpha^{-1}(E_\alpha): E_\alpha \in \mathcal{E}_\alpha, \alpha \in A\}</math>. If ''A'' is countable and <math>X_\alpha \in \mathcal{E}_\alpha</math> for all <math>\alpha</math>, then <math>\bigotimes_{\alpha \in A} \mathcal{M}_\alpha</math> is generated by <math>\mathcal{F}_2 = \{\prod_{\alpha \in A}E_\alpha: E_\alpha \in \mathcal{E}_\alpha\}</math>. | |||
==Other Examples of <math>\sigma</math>-algebras== | |||
* Given a set <math>X</math>, then <math>2^X</math> and <math>\{\emptyset,X\}</math> are <math>\sigma</math>-algebras, called the indiscrete and discrete <math>\sigma</math>-algebras respectively. | |||
*If <math>X</math> is uncountable, the set of countable and co-countable subsets of <math>X</math> is a <math>\sigma</math>-algebra. | |||
*By Carathéodory's Theorem, if <math>\mu^*</math> is an outer measure on <math>X</math>, the collection of <math>\mu^*</math>-measurable sets is a <math>\sigma</math>-algebra. <ref name="Folland3">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, Second Edition'', §1.4 </ref> | |||
*Let <math>f:X \to Y</math> be a map. If <math>M</math> is a <math>\sigma</math>-algebra on <math>Y</math>, then <math>\{f^{-1}(E):E\in M\}</math> is a <math>\sigma</math>-algebra in <math>X</math>. | |||
==Non-examples== | |||
* The algebra of finite and cofinite subsets of a nonempty set <math>X</math> may no longer be a <math>\sigma</math>-algebra. Let <math>X = \mathbb{Z}</math>, then every set of the form <math>\{ 2n \}</math> for <math>n \in \mathbb{Z}</math> is finite, but their countable union <math>\bigcup\limits_{n \in \mathbb{Z}} \{ 2n \} = 2\mathbb{Z}</math> is neither finite nor cofinite. | |||
==References== |
Latest revision as of 21:40, 18 December 2020
A -algebra is an algebra that is closed under countable unions. Thus a -algebra is a nonempty collection A of subsets of a nonempty set X closed under countable unions and complements. [1]
-algebra Generation
The intersection of any number of -algebras on a set is a -algebra. The -algebra generated by a collection of subsets of is the smallest -algebra containing , which is unique by this property.
The -algebra generated by is denoted as .
If and are subsets of and then . This result is commonly used to simplify proofs of containment in -algebras.
An important common example is the Borel -algebra on , the -algebra generated by the open sets of .
Product -algebras
Let be an indexed collection of nonempty sets, , and the coordinate maps. If is a -algebra on for each , the product -algebra on X is generated be . [1]
Proposition. If A is countable, then is the -algebra generated by .
Proposition. Suppose that is generated by . Then is generated by . If A is countable and for all , then is generated by .
Other Examples of -algebras
- Given a set , then and are -algebras, called the indiscrete and discrete -algebras respectively.
- If is uncountable, the set of countable and co-countable subsets of is a -algebra.
- By Carathéodory's Theorem, if is an outer measure on , the collection of -measurable sets is a -algebra. [2]
- Let be a map. If is a -algebra on , then is a -algebra in .
Non-examples
- The algebra of finite and cofinite subsets of a nonempty set may no longer be a -algebra. Let , then every set of the form for is finite, but their countable union is neither finite nor cofinite.