Isomorphism of Measure Spaces: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 15: Line 15:


===Smooth maps send sets of measure zero to sets of measure zero===
===Smooth maps send sets of measure zero to sets of measure zero===
Let <math> U </math> be an open set of <math> \mathbb{R}^n</math>, and let  <math> f\colon U \rightarrow \mathbb{R}^m</math> be a smooth map.  
Let <math> U </math> be an open set of <math> \mathbb{R}^n</math>, and let  <math> f\colon U \rightarrow \mathbb{R}^n</math> be a smooth map.  
If <math> A\subset U</math> is of measure zero, then <math> f(A)</math> is of measure zero.
If <math> A\subset U</math> is of measure zero, then <math> f(A)</math> is of measure zero.


===Mini-Sards Theorem===
===Mini-Sards Theorem===
Let <math> U </math> be an open set of <math> \mathbb{R}^n</math>, and let <math> f\colon U \rightarrow \mathbb{R}^m</math> be a smooth map. Then if <math> m > n </math>, <math>f(U)</math> has measure zero in <math> \mathbb{R}^m</math>.


==Example==
==Example==

Revision as of 08:05, 18 December 2020

Motivation

Definition

Basic Theorem

Properties

Smooth maps send sets of measure zero to sets of measure zero

Let be an open set of , and let be a smooth map. If is of measure zero, then is of measure zero.

Mini-Sards Theorem

Let be an open set of , and let be a smooth map. Then if , has measure zero in .

Example