Pointwise a.e. Convergence: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Created page with "s")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
s
== Definition ==
 
 
== Relevant Definitions==
Denote our measure space as <math> (X, \mathcal{M}, \mu) </math>. Note that a property p(x) holds for almost every <math>x \in X</math> if the set <math>\{x \in X: p(x) \text{ doesn't hold }\}</math> has measure zero.
* A sequence of functions <math>f_n</math>  converges pointwise if <math>f_n(x) \to f(x) </math> for all <math>x \in X </math>
* A sequence of functions <math>f_n</math> converges uniformly if <math>\sup_{x \in X} |f_n(x) - f(x)| \to 0 </math> ,
*A sequence of measurable functions <math>\{f_n \}</math> converges to <math> f</math> pointwise almost everywhere if <math> f_n (x) \to f(x)</math> for almost every <math> x </math>, or <math> \mu( \{x: f(x) \neq \lim_{n \to \infty} f(x) \}) =0</math>.
*A sequence of measurable functions <math>f_n</math> converges in <math>L^1</math> if <math>\int |f_n - f| \to 0.</math>
 
== Relevant Properties ==
* <math>f_n \to f</math> through    uniform Convergence <math>\to </math><math> f_n \to f</math> through  pointwise convergence  <math> \to </math> <math>f_n \to f</math> pointwise a.e. convergence
* <math>f_n \to f</math> through  <math> L^1</math> convergence <math>\to  </math> <math>f_n \to f</math>  through pointwise a.e convergence up to a subsequence
* <math>f_n \to f</math> Pointwise a.e. convergence equipped with dominating function implies <math>f_n \to f</math>  <math>L^1</math> convergence

Latest revision as of 07:35, 18 December 2020

Definition

Relevant Definitions

Denote our measure space as . Note that a property p(x) holds for almost every if the set has measure zero.

  • A sequence of functions converges pointwise if for all
  • A sequence of functions converges uniformly if ,
  • A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
  • A sequence of measurable functions converges in if

Relevant Properties

  • through uniform Convergence through pointwise convergence pointwise a.e. convergence
  • through convergence through pointwise a.e convergence up to a subsequence
  • Pointwise a.e. convergence equipped with dominating function implies convergence