Fatou's Lemma: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | <math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | ||
Furthermore, by definition we have <math> g_n\leq f_n </math>, | Furthermore, by definition we have <math> g_n\leq f_n, \forall n \in \mathbb{N}</math>, implying that <math> \int g_n\leq \int f_n </math>. | ||
Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides: | Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides yields: | ||
<math> \int \liminf_{n\rightarrow +\infty} f_n=\lim_{n\rightarrow +\infty} \int g_n = \liminf_{n\rightarrow +\infty} \int g_n \leq \liminf_{n\rightarrow +\infty} \int f_n</math>. | <math> \int \liminf_{n\rightarrow +\infty} f_n=\lim_{n\rightarrow +\infty} \int g_n = \liminf_{n\rightarrow +\infty} \int g_n \leq \liminf_{n\rightarrow +\infty} \int f_n</math>. | ||
==References== | ==References== |