Fatou's Lemma: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math>. | Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math>. | ||
Then: | Then: | ||
<math> \int \liminf_{n\rightarrow +\infty} f_n \leq \liminf_{n\rightarrow +\infty}\int f_n </math>. <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §2.2 </ref> | <math> \int \liminf_{n\rightarrow +\infty} f_n \leq \liminf_{n\rightarrow +\infty}\int f_n </math>. <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §2.2 </ref> | ||
==Proof== | ==Proof<ref>Craig, Katy. ''MATH 201A Lecture 14''. UC Santa Barbara, Fall 2020.</ref>== | ||
Define <math> g_n := \inf_{k\geq n} f_k </math> for all <math> n \in \mathbb{N} </math>. | |||
By definition, <math> \liminf_{n\rightarrow +\infty} f_n= \lim_{n\rightarrow +\infty} (\inf_{k\geq n}f_k)=\lim_{n\rightarrow +\infty} g_n</math> and <math> g_n\leq g_{n+1}, \forall n \in \mathbb{N} </math>, so by Monotone Convergence Theorem, | |||
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>. | |||
Furthermore, by definition we have <math> g_n\leq f_n, \forall n \in \mathbb{N}</math>, implying that <math> \int g_n\leq \int f_n </math>. | |||
Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides yields: | |||
<math> \int \liminf_{n\rightarrow +\infty} f_n=\lim_{n\rightarrow +\infty} \int g_n = \liminf_{n\rightarrow +\infty} \int g_n \leq \liminf_{n\rightarrow +\infty} \int f_n</math>. | |||
==References== | ==References== |